Use el DOI o este identificador para enlazar este recurso:
http://www.ru.iimas.unam.mx/handle/IIMAS_UNAM/ART30| Autor: | Santamaria-Bonfil, Guillermo |
| Otros autores : | Gershenson, Carlos Fernández, Nelson |
| Título : | Measuring the Complexity of Continuous Distributions |
| En: | Entropy (1099-4300), Vol. 18(3), (2016) |
| Número completo : | https://www.mdpi.com/1099-4300/18/3 |
| Editorial : | MDPI |
| Abstract : | We extend previously proposed measures of complexity, emergence, and self-organization to continuous distributions using differential entropy. Given that the measures were based on Shannon’s information, the novel continuous complexity measures describe how a system’s predictability changes in terms of the probability distribution parameters. This allows us to calculate the complexity of phenomena for which distributions are known. We find that a broad range of common parameters found in Gaussian and scale-free distributions present high complexity values. We also explore the relationship between our measure of complexity and information adaptation. |
| Area del conocimiento : | Ciencias Físico Matemáticas y Ciencias de la Tierra |
| Palabras clave en inglés : | complexity emergence self-organization information differential entropy probability distributions |
| Fecha de publicación : | 26-feb-2016 |
| DOI : | http://dx.doi.org/10.3390/e18030072 |
| URI : | http://www.ru.iimas.unam.mx/handle/IIMAS_UNAM/ART30 |
| Idioma: | Inglés |
| Lugar: | Estados Unidos |
| Citación : | Santamaria-Bonfil, G., Fernandez, N., & Gershenson, C. (2016). Measuring the Complexity of Continuous Distributions. Entropy, 18(3). doi:10.3390/e18030072 |
| Aparece en las colecciones: | Artículos |
Texto completo:
| Archivo | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| ART30.pdf | 700.97 kB | Adobe PDF | Visualizar/Abrir |
Este recurso está sujeto a una Licencia Creative Commons