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Abstract: We extend previously proposed measures of complexity, emergence, and self-organization
to continuous distributions using differential entropy. Given that the measures were based
on Shannon’s information, the novel continuous complexity measures describe how a system’s
predictability changes in terms of the probability distribution parameters. This allows us to calculate
the complexity of phenomena for which distributions are known. We find that a broad range of
common parameters found in Gaussian and scale-free distributions present high complexity values.
We also explore the relationship between our measure of complexity and information adaptation.
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1. Introduction

Complexity is pervasive. However, there is no agreed definition of complexity. Perhaps
complexity is so general that it resists definition [1]. Still, it is useful to have formal measures
of complexity to study and compare different phenomena [2]. We have proposed measures of
emergence, self-organization, and complexity [3,4] based on information theory [5]. Shannon
information can be seen as a measure of novelty, so we use it as a measure of emergence, which
is correlated with chaotic dynamics. Self-organization can be seen as a measure of order [6],
which can be estimated with the inverse of Shannon’s information and is correlated with regularity.
Complexity can be seen as a balance between order and chaos [7,8], between emergence and
self-organization [4,9].

We have studied the complexity of different phenomena for different purposes [10–14]. Instead
of searching for more data and measuring its complexity, we decided to explore different distributions
with our measures. This would allow us to study broad classes of dynamical systems in a general
way, obtaining a deeper understanding of the nature of complexity, emergence, and self-organization.
Nevertheless, our previously proposed measures use discrete Shannon information. The later
statement has two implications: on the one hand, in the continuous domain, entropy is a proxy of
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the average uncertainty for a probability distribution with a given parameter set, rather than a proxy
of the system’s average uncertainty; on the other, even when any distribution can be discretized, this
always comes with caveats [15]. For these reasons, we base ourselves on differential entropy [15,16]
to propose measures for continuous distributions.

The next section provides background concepts related to information and entropies. Next,
discrete measures of emergence, self-organization, and complexity are reviewed [4]. Section 4
presents continuous versions of these measures, based on differential entropy. The probability density
functions used in the experiments are described in Section 5. Section 6 presents results, which are
discussed and related to information adaptation [17] in Section 7.

2. Information Theory

Let us have a set of possible events whose probabilities of occurrence are p1, p2, . . . , pn ∈ P (X).
Can we measure the uncertainty described by the probability distribution P (X)? To solve this
endeavor in the context of telecommunications, Shannon proposed a measure of entropy [5], which
corresponds to Boltzmann–Gibbs entropy in thermodynamics. This measure, as originally proposed
by Shannon, possesses a dual meaning of both uncertainty and information, even when the latter
term was later discouraged by Shannon himself [18]. Moreover, we encourage the concept of entropy
as the average uncertainty given the property of asymptotic equipartition (described later in this
section). From an information-theoretic perspective, entropy measures the average number of binary
questions required to determine the value of pi . In cybernetics, it is related to variety [19], a measure
of the number of distinct states a system can be in.

In general, entropy is discussed regarding a discrete probability distribution. Shannon extended
this concept to the continuous domain with differential entropy. However, some of the properties
of its discrete counterpart are not maintained. This has relevant implications for extending to the
continuous domain the measures proposed in [3,4]. Before delving into these differences, first we
introduce the discrete entropy, the asymptotic equipartition property (AEP), and the properties of
discrete entropy. Next, differential entropy is described, along with its relation to discrete entropy.

2.1. Discrete Entropy

Let X be a discrete random variable, with a probability mass function p (x) = Pr {X = x} , x ∈ X.
The entropy H (X) of a discrete random variable X is then defined by

H (X) = − ∑
x∈X

p (x) log2 p (x) . (1)

The logarithm base provides the entropy’s unit. For instance, base two measures entropy as bits,
base ten as nats. If the base of the logarithm is β, we denote the entropy as Hβ (X). Unless otherwise
stated, we will consider all logarithms to be of base two. Note that entropy does not depend on the
value of X, but on the probabilities of the possible values X can take. Furthermore, Equation (1) can
be understood as the expected value of the information of the distribution.

2.2. Asymptotic Equipartition Property for Discrete Random Variables

In probability, the large numbers law states that, for a sequence of n independent and identically
distributed (i.i.d.) elements of a sample X, the average value of the sample 1

n ∑n
i=1 Xi approximates

the expected value E (X). In this sense, the Asymptotic Equipartition Property (AEP) establishes that
H (X) can be approximated by

H (X)=
1
n

log2
1

p (X1, . . . , Xn)
,

under the conditions that n→ ∞, and xi ∈ X is i.i.d.
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Therefore, discrete entropy can be written also as

H (X) = E
[

log
1

p (X)

]
, (2)

where E is the expected value of P (X) . Consequently, Equation (2) describes the expected or average
uncertainty of probability distribution P (X) .

A final note about entropy is that, in general, any process that makes the probability distribution
more uniform increases its entropy [15].

2.3. Properties of Discrete Entropy

The following are properties of the discrete entropy function. Proofs and details can be found in
texbooks [15].

1. Entropy is always non-negative, H (X) ≥ 0.

2. Hβ (X) =
(

logβ a
)

Ha (X) .

3. H (X1, X2, . . . , Xn) ≤ ∑n
i=1 H (Xi) , with equality iff Xi are i.i.d.

4. H (X) ≤ log |X| , with equality iff X is distributed uniformly over X.
5. H (X) is concave.

2.4. Differential Entropy

Entropy was first formulated for discrete random variables, and was then generalized to
continuous random variables in which case it is called differential entropy [20]. It has been related to
the shortest description length, and thus, is similar to the entropy of a discrete random variable [21].
The differential entropy H (X) of a continuous random variable X with a density f (x) is defined as

H ( f ) = H (X) = −
∫
S

f (x) log2 f (x) dx, (3)

where S is the support set of the random variable. It is well-known that this integral exists if and only
if the density function of the random variables is Riemann-integrable [15,16]. The Riemann integral
is fundamental in modern calculus. Loosely speaking, is the approximation of the area under any
continuous curve given by the summation of ever smaller sub-intervals (i.e., approximations), and
implies a well-defined concept of limit [21]. H ( f ) can also be used to denote differential entropy,
and in the rest of the article, we shall employ this notation.

2.5. Asymptotic Equipartition Property of Continuous Random Variables

Given a set of i.i.d. random variables drawn from a continuous distribution with probability
density f (x), its differential entropy H ( f ) is given by

− 1
n

log2 ( f (X1, . . . , Xn))→ E [log2 ( f (X))] = H ( f ) , (4)

such that n → ∞. The convergence to expectation is a direct application of the weak law of large
numbers.

2.6. Properties of Differential Entropy

1. H ( f ) depends on the coordinates. For different choices of coordinate systems for a given
probability distribution P (X), the corresponding differential entropies might be distinct.

2. H ( f ) is scale variant [15,22]. In this sense, H (a f ) = H ( f ) + log2 |a|, such that a 6= 0.
3. H ( f ) is traslational invariant [15,16,22]. In this sense, H ( f + c) = H ( f ).
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4. −∞ ≤ H ( f ) ≤ ∞ [16]. The H ( f ) of a Dirac delta probability distribution, is considered the
lowest H ( f ) bound, which corresponds to H ( f ) = −∞.

5. Information measures such as relative entropy and mutual information are consistent, either in
the discrete or continuous domain [22].

2.7. Differences between Discrete and Continuous Entropies

The derivation of Equation (3) comes from the assumption that its probability distribution is
Riemann-integrable. If this is the case, then differential entropy can be defined just like discrete
entropy. However, the notion of “average uncertainty” carried by the Equation (1) cannot be
extended to its differential equivalent. Differential entropy is rather a function of the parameters
of a distribution function, that describes how uncertainty changes as the parameters are modified [15].

To understand the differences between Equations (1) and (3), we will quantize a probability
density function, and then calculate its discrete entropy [15,16].

First, consider the continuous random variable X with a probability density function f (x) .This
function is then quantized by dividing its range into h bins of length ∆. Then, in accordance to the
Mean Value Theorem, within each hi bin of size [i∆, (i + 1)∆], there exists a value x∗i that satisfies

(i+1)∆∫
i∆

f (x) dx = f (x∗i )∆. (5)

Then, a quantized random variable X∆
i is defined as

X∆
i = x∗i , if i∆ ≤ X ≤ (i + 1)∆, (6)

and, its probability is

pi =
∫ (i+1)∆

i∆
X∆ = f (x∗i )∆. (7)

Consequently, the discrete entropy of the quantized variable X∆, is formulated as

H
(

X∆
)

= −
∞

∑
−∞

pi log2 pi

= −
∞

∑
−∞

( f (x∗i )∆) log2 ( f (x∗i )∆)

= −∑ ∆ f (x∗i ) log2 f (x∗i )−∑ f (x∗i )∆ log2 ∆

= − log2 ∆−∑ ∆ f (x∗i ) log2 f (x∗i )

u − log2 ∆−
∫ ∞

−∞
f (x∗i ) log2 f (x∗i ) dx. (8)

To understand the final form of Equation (8), notice that as the size of each bin becomes
infinitesimal, ∆ → 0, the left-hand term of Equation (8) becomes log2 (∆). This is due to the fact
that Equation (8) is a Riemann integral (as mentioned before)

lim
∆→0

∞

∑
−∞

f (x∗i )∆ =
∫ ∞

−∞
f (x) dx = 1.

Furthermore, as ∆→ 0, the right-hand side of Equation (8) approximates the differential entropy
of X such that

lim
∆→0

∞

∑
−∞

∆ f (x∗i ) log2 f (x∗i ) =
∫ ∞

−∞
f (x) log2 f (x) dx.
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Note that the left-hand side of Equation (8), explodes towards minus infinity such that

lim
∆→0

log2 (∆) ≈ −∞.

Therefore, the difference between H ( f ) and H
(
X∆)is H ( f )− H

(
X∆) = log2 (∆), which approaches

to −∞ as the bin size becomes infinitesimal. Moreover, consistently with this is the fact that the
differential entropy of a discrete value is −∞ [16].

Lastly, in accordance to [15], the average number of bits required to describe a continuous
variable X with a n-bit accuracy (quantization) is H (X) + n ≈ H ( f ) such that

H
(

X∆
)′

= lim
∆→0

H
(

X∆
)
+ log2 (∆)→ H ( f ) . (9)

3. Discrete Complexity Measures

Emergence E, self-organization S, and complexity C are close relatives of Shannon’s entropy.
These information-based measures inherit most of the properties of Shannon’s discrete entropy [4],
being the most valuable one that discrete entropy quantizes the average uncertainty of a probability
distribution. In this sense, complexity C and its related measures (E and S) are based on a quantization
of the average information contained by a process described by its probability distribution.

3.1. Emergence

Emergence has been used and debated for centuries [23]. Still, emergence can be understood [24].
The properties of a system are emergent if they are not present in their components, i.e., global
properties which are produced by local interactions are emergent. For example, the temperature
of a gas can be said to be emergent [25], since the molecules do not possess such a property: it is
a property of the collective. In a broad and informal way, emergence can be seen as differences in
phenomena as they are observed at different scales [2,4].

Another form of entropy, rather related to the concept of information as uncertainty, is called
emergence E [4]. Intuitively, E measures the ratio of uncertainty a process produces by new
information that is a consequence of changes in (a) dynamics or (b) scale [4]. However, its formulation
is more related to the thermodynamics entropy. Thus, it is defined as

E ≡ H (X) = −K
N

∑
i=1

pi log2 pi, (10)

where pi = P (X = x) is the probability of the element i, and K is a normalizing constant.
Having the same equation to measure emergence, information, and entropy could be questioned.

However, different phenomena such as gravity and electrostatic force are also described with the
same equation. Still, this does not mean that gravitation and charge are the same. In the same fashion,
there are differences between emergence, information, and entropy, which depend more on their
usage and interpretation than on the equation describing them. Thus, it is justified to use the same
expression to measure different phenomena [10].

3.2. Multiple Scales

In thermodynamics, the Boltzmann constant K, is employed to normalize the entropy in
accordance to the probability of each state. However, Shannon’s entropy typical formulation [15–17]
neglects the usage of K in Equation (10) (being its only constraint that K > 0, [4]). Nonetheless, for
emergence as a measure of the average production of information for a given distribution, K plays
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a fundamental role. In the cybernetic definition of variety [18], K is a function of the distinct states a
system can be, i.e., the system’s alphabet size. Formally, it is defined as

K =
1

log2 (b)
, (11)

where b corresponds to the size of the alphabet of the sample or bins of a discrete probability
distribution. Furthermore, K should guarantee that 0 ≤ E ≤ 1; therefore, b should be at least equal to
the number of bins of the discrete probability distribution.

It is also worth noting that the denominator of Equation (11), log2 (b) , is equivalent to the
maximum entropy for a continuous distribution function, the uniform distribution. Consequently,
emergence can be understood as the ratio between the entropy for given distribution P (X), and the
maximum entropy for the same alphabet size H (U) [26], is

E =
H (P (X))

H (U)
. (12)

3.3. Self-Organization

Self-organisation, S, is the complement of E. In this sense, with more uncertainty less
predictability is achieved, and vice versa. Thus, an entirely random process (e.g., uniform distribution)
has the lowest organization, and a completely deterministic system one (Dirac delta distribution),
has the highest. Furthermore, an extremely organized system yields no information with respect of
novelty, while, on the other hand, the more chaotic a system is, the more information is yielded [4,26].

The metric of self-organization S was proposed to measure the organization a system has
regarding its average uncertainty [4,27]. S is also related to the cybernetic concept of constraint, which
measures changes in due entropy restrictions on the state space of a system [8]. These constraints
confine the system’s behavior, increasing its predictability, and reducing the (novel) information
it provides to an observer. Consequently, the more self-organized a system is, the less average
uncertainty it has. Formally, S is defined as

S = 1− E = 1−
(

H (P (X))

H (U)

)
, (13)

such that 0 ≤ S ≤ 1. It is worth noting that, the maximal S (i.e., S = 1) is only achievable when the
entropy for a given probability density function (PDF) is such that H (P (X))→ 0, which corresponds
to the entropy of a Dirac delta (only in the discrete case).

3.4. Complexity

Complexity C can be described as a balance between order (stability), and chaos (scale or
dynamical changes) [4]. More precisely, this function describes a system’s behavior in terms of the
average uncertainty produced by its probability distribution in relation the dynamics of a system.
Thus, the complexity measure is defined as

C = 4 · E · S, (14)

such that, 0 ≤ C ≤ 1.

4. Continuous Complexity Measures

As mentioned before, discrete and differential entropies do not share the same properties. In fact,
the property of discrete entropy as the average uncertainty in terms of probability, cannot be extended
to its continuous counterpart. As a consequence, the proposed continuous information-based
measures describe how the production of information changes respect to the probability distribution
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parameters. In particular, this characteristic could be employed as a feature selection method, where
the most relevant variables are those which have a high emergence (the most informative).

The proposed measures are differential emergence (ED), differential self-organization (SD), and
differential complexity (CD). However, given that the interpretation and formulation (in terms of
emergence) of discrete and continuous S (Equation (13)) and C (Equation (14)) are the same, we only
provide details on ED. The difference between SD, CD and S, C is that the former are defined on ED,
while the latter are on E. Furthermore, we make an emphasis in the definition of the normalizing
constant K, which plays a significant role in constraining ED ∈ [0, 1], and consequently, SD and CD
as well.

4.1. Differential Emergence

As for its discrete form, the emergence for continuous random variables is defined as

ED = −K
ζ∫

υ

f (X) log2 f (X) , (15)

where, [υ, ζ] is the domain, and K stands for a normalizing constant related to the distribution’s
alphabet size. It is worth noting that this formulation is highly related to the view of emergence
as the ratio of information production of a probability distribution respect the maximum differential
entropy for the same range. However, since ED can be negative (i.e., entropy of a single discrete
value), we choose ED such that

E′D =

{
ED ED > 0

0 otherwise.
. (16)

E′D is rather a more convenient function than ED, as 0 ≤ E′D ≤ 1. This statement is justified in
the fact that the differential entropy of a discrete value is −∞ [15]. In practice, differential entropy
becomes negative only when the probability distribution is extremely narrow, i.e., there is a high
probability for few states. In the context of information changes due to parameter manipulation, an
ED < 0 means that the probability distribution is becoming a Dirac delta distribution. For notation
convenience, from now on we will employ ED and E′D interchangeably.

4.2. Multiple Scales

The K constant expresses the relation between uncertainty of a given P (X) Defined by H(X),
respect to the entropy of a maximum entropy over the same domain [26]. In this setup, as the
uncertainty grows, E′D becomes closer to unity.

To constrain the value of H (X) = [0, 1] in the discrete emergence case, it was enough to establish
the distribution’s alphabet size, b of Equation (10), such that b ≥ # bins [4]. However, for any PDF, the
number of elements between a pair of points a and b, such that a 6= b, is infinite. Moreover, as the size
of each bin becomes infinitesimal, ∆ → 0, the entropy for each bin becomes −∞ [15]. In addition, it
has been stated that b value should be equal to the cardinality of X [26]; however, this applies only to
discrete emergence. Therefore, rather than a generalization, we propose an heuristic for the selection
of a proper K in the case of differential emergence. Moreover, we differentiate between b for H ( f ),
and b’ for H

(
X∆)′.

As in the discrete case, K is defined as Equation (11). In order to determine the proper alphabet
size b, we propose the next algorithm:

1. If we know a priori the true P (X), we calculate H ( f ), and b = |P (X)| is the cardinality within
the interval of Equation (15). In this sense, a large value will denote the cardinality of a “ghost”
sample [16]. (It is ghost, in the concrete sense that it does not exist. Its only purpose is to provide
a bound for the maximum entropy accordingly to some large alphabet size.)
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2. If we do not know the true P (X), or we are interested rather in H
(
X∆)′ where a sample of finite

size is involved, we calculate b’ as

b′ = ∑
i

ind (xi), (17)

such that, the non-negative function ind (·) is defined as

ind (xi) =

{
1 iff P (xi) > 0

0 otherwise
. (18)

For instance, in the quantized version of the standard normal distribution (N (0, 1)), only values
within±3σ satisfy this constraint despite the domain of Equation (15). In particular, if we employ
b = |X| rather than b′, we compress the ED value as it will be shown in the next section. On the
other hand, for a uniform distribution or a Power-Law (such that 0 < xmin < x), the whole range
of points satisfies this constraint.

5. Probability Density Functions

In communication and information theory, uniform (U) and normal, also known as Gaussian
(G) distributions play a significant role. Both are referent to maximum entropy: on the one
hand, U has the maximum entropy within a continuous domain; on the other hand, G has the
maximum entropy for distributions with a fixed mean (µ), and a finite support set for a fixed
standard deviation (σ) [15,16]. Moreover, as mentioned earlier, H ( f ) is useful when comparing the
entropies of two distributions over some reference space [15,16,28]. Consequently, U, but mainly
G, are heavily used in the context of telecommunications for signal processing [16]. Nevertheless,
many natural and man-made phenomena can be approximated with Power-Law (PL) distributions.
These types of distributions typically present complex patterns that are difficult to predict, making
them a relevant research topic [29]. Furthermore, Power-Laws have been related to the presence of
multifractal structures in certain types of processes [28]. Moreover, Power-Laws are tightly related to
self-organization and criticality theory, and have been studied under information frameworks before
(e.g., Tsallis’s, and Renyi’s maximum entropy principle) [29,30].

Therefore, in this work we focus our attention to these three PDFs. First, we provide a short
description of each PDF, then, we summarize its formulation, and the corresponding H ( f ) in Table 1.

Table 1. Studied PDFs with their corresponding analytical differential entropies.

Distribution PDF Differential Entropy

Uniform p(x)=

{
1

b−a a ≤ x ≤ b
0 otherwise

H (p (x)) = log2 (b)

Normal p (x) = 1
σ
√

2π
e
−(x−µ)2

2σ H (p (x)) = 1
2 log2

(
2πeσ2)

Power-law p (x) =
(

α−1
xmin

) (
x

xmin

)−α
H (p (x)) = log2 (xmin)− log2 (α− 1) +

(
α

α−1

)
5.1. Uniform Distribution

The simplest PDF, as its name states, establishes that for each possible value of X, the probability
is constant over the whole support set (defined by the range between a and b), and 0 elsewhere. This
PDF has no parameters besides the starting and ending points of the support set. Furthermore, this
distribution appears frequently in signal processing as white noise, and it has the maximum entropy
for continuous random variables [16].
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Its PDF and its corresponding H ( f ) are shown in first row of Table 1. It is worth noting that, as
the cardinality of the domain of U grows, its differential entropy increases as well.

5.2. Normal Distribution

The normal or Gaussian distribution is one of the most important probability distribution
families [31]. It is fundamental in the central limit theorem [16], time series forecasting models such
as classical autoregressive models [32], modelling economic instruments [33], encryption, modelling
electronic noise [16], error analysis and statistical hypothesis testing.

Its PDF is characterized by a symmetric, bell-shaped function whose parameters are: location
(i.e., mean µ), and dispersion (i.e., standard deviation σ2 ). The standard normal distribution is
the simplest and most used case of this family, its parameters are N

(
µ = 0, σ2 = 1

)
. A continuous

random variable x ∈ X is said to belong to a Gaussian distribution, X ∼ N
(
µ, σ2) , if its PDF

p (x) is given by the one described in the second row of Table 1. As is shown in the table, the
differential entropy of G only depends on the standard deviation. Furthermore, it is well known
that its differential entropy is monotonically increasing concave in relation to σ [31]. This is consistent
with the aforementioned fact that H ( f ) is translation-invariant. Thus, as σ grows, so does the value
of H (G), while as σ→ 0 such that 0 < σ < 1, it becomes a Dirac delta with H ( f ) ≈ 0.

5.3. Power-Law Distribution

Power-Law distributions are commonly employed to describe multiple phenomena (e.g.,
turbulence, DNA sequences, city populations, linguistics, cosmic rays, moon craters, biological
networks, data storage in organisms, chaotic open systems, and so on) across numerous scientific
disciplines [28–30,34–37]. These type of processes are known for being scale invariant, being the
typically scales (α, see below) in nature between one and 3.5 [30]. In addition, the closeness of this
type of PDF to chaotic systems and fractals is such that, some fractal dimensions are called entropy
dimensions (e.g., box-counting dimension, and Renyi entropy) [36].

Power-Law distributions can be described by continuous and discrete distributions.
Furthermore, Power-laws in comparison with Normal distribution, generate events of large orders
of magnitude more often, and are not well represented by a simple mean. A Power-Law density
distribution is defined as

p (x) dx = P (x ≤ X ≤ x + dx) = Cx−αdx, (19)

such that, C is a normalization factor, α is the scale exponent, and X | x > xmin > 0 is the observed
continuos random variable. This PDF diverges as x → 0 , and do not hold for all x ≥ 0 [37]. Thus,
xmin corresponds to lower bound of a Power-Law. Consequently, in Table 1, we provide the PDF of a
Power-Law as proposed by [35], and its corresponding H ( f ) as proposed by [38].

The aforementioned PDFs, and their corresponding H ( f ) are shown in Table 1. Further details
about the derivation of H ( f ) for U, and G can be found in [15,16]. For additional details on the
differential entropy of the Power-Law, we refer the reader to [28,38].

6. Results

In this section, comparisons of theoretical vs. quantized differential entropy for the PDFs
considered are shown. Next, we provide differential complexity results (E′D, SD, and CD) for
the mentioned PDFs. Furthermore, in the case of Power-Laws, we also provide and discuss the
corresponding complexity measures results for real world phenomena, already described in [39]. In
addition, it is worth noting that, since quantized H ( f ) of the Power-Law yielded poor results, the
Power-Law’s analytical H ( f ) form was used.
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6.1. Theoretical vs. Quantized Differential Entropies

Numerical results of theoretical and quantized differential entropies are shown in Figures 1
and 2. Analytical H ( f ) results are displayed in blue, whereas the quantized H

(
X∆)′ ones are shown

in red. For each PDF, a sample of one million (i.e., 1 × 106 ≡ 1M) points where employed for
calculations. The bin size ∆ required by H

(
X∆)′, is obtained as the ratio ∆ = Range

|Sample| . However,
the value of ∆ has considerable influence in the resulting quantized differential entropy.

(a)

(b)

Figure 1. Theoretical and quantized differential entropies for (a) Uniform distribution and
(b) Power-Law distributions .

6.1.1. Uniform Distribution

The results for U were expected. We tested several values of the cardinality of P (X), such that
b = 2i | i = 1, . . . , 15. Using the analytical H ( f ) formula of Table 1, the quantized H

(
X∆)′, and

∆ = 1, we achieved exactly the same differential entropy values. Results for U are shown in the left
side of Figure 1. As was mentioned earlier, as the cardinality of the distribution grows, so does the
differential entropy of U.
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6.1.2. Normal Distribution

Results for the Gaussian distribution were less trivial. As in the U case, we calculate both H ( f )
and H

(
X∆)′, for a fixed µ = 0, and modified the standard deviation parameter such that, σ = 2i | i =

0, 1, . . . , 14. Notice that the first tested distribution is the standard normal distribution.
In Figure 2, results obtained for the n-bit quantized differential entropy, and for the analytical

form of Table 1 are shown. Moreover, we displayed two cases of the normal distribution: the left side
of Figure 2 shows results for P (X) with range [−50, 50] and a bin size, ∆ = 100

1M = 1× 10−4,whereas,
the right side provides results for a P (X) with range [−500e3, 500e3] and ∆ = 1. It is worth noting
that, in the former case, the quantized differential entropy shows a discrepancy with H ( f ) after only
σ = 24 = 16, which quickly increases with growing σ. On the other hand, for the latter case, there is an
almost perfect match between the analytical and quantized differential entropies; however, the same
mismatch will be observed if the standard deviation parameter is allowed to grow unboundedly (σ→
∞). Nonetheless, this is a consequence of how H

(
X∆)′ is computed. As mentioned earlier, as ∆→ 0,

the value of each quantized X∆ grows towards −∞. Therefore, in the G case, it seems convenient
employing a Probability Mass Function (PMF) rather than a PDF. Consequently, the experimental
setup of right side image of Figure 2 is employed for the calculation of the continuous complexity
measures of G.

Figure 2. Two comparisons of theoretical vs. quantized differential entropy for the Gaussian distribution.
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6.1.3. Power-Law Distribution

Results for the Power-Law distribution are shown in the right side of Figure 1. In both U and G,
a PMF instead of a PDF was used to avoid cumbersome results (as depicted in the corresponding
images). However, for the Power-Law distribution, the use of a PDF is rather convenient. As
discussed in the next section and highlighted by [35], xmin has a considerable impact on the value
of H ( f ). For Figure 1, the range employed was [1, 50], with a bin size of ∆ = 1× 10−5, a xmin = 0.99,
and modified the scale exponent parameter such that, α = i | i = 1, . . . , 15. For this particular setup,
we can observe that as α increases, H ( f ) and H

(
X∆)′ decreases its value towards −∞. This effect is

consequence of increasing the scale of the Power-Law such that, the slope of the function in a log-log
space, approaches to zero. In this sense, with larger αs, the P (X) becomes closer to a Dirac delta
distribution, thus, H ( f ) → −∞. However, as will be discussed later, for larger αs, larger xmin values
are required, in order for H ( f ) to display positive values.

6.2. Differential Complexity: ED, SD, and CD

U results are trivial: ED = 1, and SD, CD = 0. For each upper bound of U, E′D = H(U)
H(U)

= 1, which
is exactly the same as its discrete counterpart. Thus, U results are not considered in the following
analysis.

Continuous complexity results for G and PL are shown in Figures 3 and 4, respectively. In the
following, we provide details of these measures.

Figure 3. Complexity of the Gaussian distribution.
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Figure 4. Complexity measures for the Power-Law. Lower values of the scale exponent α are displayed
in dark blue, colors turns into reddish for larger scale exponents.

6.2.1. Normal Distribution

It was stated in Section 4 that the size of the alphabet is given by the function ind (P (X)).
This rule establishes a valid cardinality such that P (X) > 0, thus, only those states with a positive
probability are considered. For P

(
X∆), such operation can be performed. Nevertheless, when the
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analytical H ( f ) is used, the proper cardinality of the set is unavailable. Therefore, in the Gaussian
distribution case, we tested two criteria for selecting the value of b:

1. ∑xi
ind (·) is employed for H

(
X∆)′ .

2. A constant with a large value (C = 1× 106) is used for the analytical formula of H ( f ).

In Figure 3, solid dots are used when K is equal to the cardinality of P (X) > 0, whereas solid
squares are used for an arbitrary large constant. Moreover, for the quantized case of P (G) , Table 2
shows the cardinality for each sigma, b′i , and its corresponding Ki. As can be observed, for a large
normalizing constant K, a logarithmic relation is displayed for ED and SD. In addition, the maximum
CD is achieved for σ = 28 = 256, which is where ED = SD. However, for H

(
X∆)′ the the maximum

CD is found around σ = 21,2,3 = 2, 4, 8, such that CD ≤ ε | ε → 0. A word of advice must be
made here. The required cardinality to normalize the continuous complexity measures such that
0 ≤ ED, SD, CD ≤ 1, must have a lower bound. This bound should be related to the scale of the
P (X) [40], and the quantization size ∆. In our case, when a large cardinality |U| = 1 × 106, and
∆ = 1 are used, the normalizing constant flattens ED results respect those obtained by b′; moreover,
the large constant increases SD, and takes greater standard deviations for achieving the maximum CD.
However, these complexity results are rather artificial in the sense that, if we arbitrarly let |U| → ∞
then trivially we will obtain ED = 0, SD = 1, and CD = 0. Moreover, it has been stated that the
cardinality of P (X) should be employed as a proper size of b [26]. Therefore, when H

(
X∆)′ is

employed, the cardinality of P (X) > 0 must be used. On the contrary, when H ( f ) is employed, a
coarse search for increasing alphabet sizes could be used so that the maximal H ( f ) satisfies H( f )

H(U)
≤ 1.

Table 2. Alphabet size b′, and its corresponding normalizing K constant for the normal distribution G.

σ b′ = ∑ ind (Pr (X) > 0) H (U) = log2 (b
′) K = 1

H(U)

20 = 1 78 6.28 0.16
21 = 2 154 7.26 0.14
22 = 4 308 8.27 0.12
23 = 8 616 9.27 0.11

24 = 16 1232 10.27 0.10
25 = 32 2464 11.27 0.09
26 = 64 4924 12.27 0.08
27 = 128 9844 13.27 0.075
28 = 256 19,680 14.26 0.0701
29 = 512 39,340 15.26 0.0655

210 = 1024 78,644 16.26 0.0615
211 = 2048 157,212 17.26 0.058
212 = 4096 314,278 18.26 0.055
213 = 8192 628,258 19.26 0.0520

214 = 16, 384 1,000,000 19.93 0.050

6.2.2. Power-Law Distribution

In this case, H ( f ) rather than H
(
X∆)′ is used for computational convenience. Although the

cardinality of P (X) > 0 is not available, by simply substituting p (xi) > 0 | x =
{

1, . . . , 1× 106}
we can see that the condition is fulfilled by the whole set. Therefore, the large C criterium, earlier
detailed, is used. Still, given that a numerical Power-Law distribution is given by two parameters,
a lower bound xmin and the scale exponent α, we depict our results in 3D in Figure 4. From left to
right, ED, SD, and CD for the Power-Law distribution are shown, respectively. In the three images,
the same coding is used: x-axis displays the scale exponent (α) values, y-axis shows xmin values, and
z-axis depicts the continuous measure values; lower values of α are displayed in dark blue, turning
into reddish colors for larger exponents.
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As it can be appreciated in Figure 4, for small xmin (e.g., xmin = 1) values, low emergence is
produced despite the scale exponent. Moreover, maximal self-organization (i.e., SD = 1) is quickly
achieved (i.e., α = 4), providing a PL with at most fair complexity values. However, if we let xmin take
larger numbers, ED grows, achieving the maximal complexity (i.e., CD ≈ 0.8) of this experimental
setup at xmin = 15, α = 1. This behavior is also observed for other scale exponent values, where
emergence of new information is produced as the xmin value grows. Furthermore, it has been stated
that for P (X), which displays a Power-Law behavior, it is required that ∀xi ∈ P (X) | xi > xmin [37].
Thus, for every α there should be an xmin such that ED > 0. Moreover, for larger scale exponents,
larger xmin values are required for the distribution shows emergence of new information at all.

6.3. Real World Phenomena and Their Complexity

Data of phenomena that follows a Power-Law is provided in Table 3. These Power-Laws have
been studied by [35,37,39], and the Power-Law parameters were published by [39]. The phenomena
in the table mentioned above compromises data from:

1. Numbers of occurrences of words in the novel Moby Dick by Hermann Melville.
2. Numbers of citations to scientific papers published in 1981, from the time of publication until June

1997.
3. Numbers of hits on websites by users of America Online Internet services during a single day.
4. Number of received calls to A.T.&T. U.S. long-distance telephone services on a single day.
5. Earthquake magnitudes occurred in California between 1910 and 1992.
6. Distribution of the diameter of moon craters.
7. Peak gamma-ray intensity of solar flares between 1980 and 1989.
8. War intensity between 1816–1980, where intensity is a formula related to the number of deaths

and warring nations populations.
9. Frequency of family names accordance with U.S. 1990 census.

10. Population per city in the U.S. in agreement with U.S. 2000 census.

More details about these Power-Laws can be found in [35,37,39].
For each phenomenon, the corresponding differential entropy and complexity measures are

shown in Table 3. Furthermore, we also provide Table 4 which is a color coding for complexity
measures proposed in [4]. Five colors are employed to simplify the different value ranges of ED, SD,
and CD results. According to the nomenclature suggested in [4], results for these sets show that, very
high complexity 0.8 ≤ CD ≤ 1 is obtained by the number of citations set (i.e., 2), and intensity of
solar flares (i.e., 7). High complexity, 0.6 ≤ CD < 0.8 is obtained for received telephone calls (i.e., 4),
intensity of wars (i.e., 8), and frequency of family names (i.e., 9). Fair complexity 0.4 ≤ CD < 0.6 is
displayed by earthquakes magnitude (i.e., 5), and population of U.S. cities (i.e., 10). Low complexity,
0.2 ≤ CD < 0.4 is obtained for frequency of used words in Moby Dick (i.e., 1) and web hits (i.e., 3),
whereas, moon craters (i.e., 6) have very low complexity 0 ≤ CD < 0.2. In fact, earthquakes, and
web hits, have been found not to follow a Power-Law [35]. Furthermore, if such sets were to follow
a Power-Law, a greater value of xmin would be required as can be observed in Figure 4. In fact, the
former case is found for the frequency of words used in Moby Dick. In [39], parameters of Table 3
are proposed. However, in [35], another set of parameters are estimated (i.e., xmin = 7, α = 1.95).
For the more recent estimated set of parameters, a high complexity is achieved (i.e., CD = 0.74),
which is more consistent with literature about Zipf’s law [39]. Lastly, in the case of moon craters, the
xmin = 0.01 is rather a poor choice according to Figure 4. For the chosen scale exponent, it would
require at least a xmin ≈ 1, for the Power-Law to produce any information at all. It should be noted
that xmin can be adjusted to change the values of all measures. In addition, it is worth mentioning
that if we were to normalize and discretize a Power-Law distribution to calculate its discrete entropy
(as in [4]), all Power-Law distributions present a very high complexity, independently of xmin and α,
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precisely because these are normalized. Still, this is not useful for comparing different Power-Law
distributions.

Table 3. Power-Law parameters and information-based measures of real world phenomena.

Phenomenon xmin α (Scale Exponent) H ( f ) E′D SD CD

1 Frequency of use of words 1 2.2 1.57 0.078 0.92 0.29
2 Number of citations to papers 100 3.04 7.1 0.36 0.64 0.91
3 Number of hits on web sites 1 2.4 1.23 0.06 0.94 0.23
4 Telephone calls received 10 2.22 4.85 0.24 0.76 0.74
5 Magnitude of earthquakes 3.8 3.04 2.38 0.12 0.88 0.42
6 Diameter of moon craters 0.01 3.14 −6.27 0 1 0
7 Intensity of solar flares 200 1.83 10.11 0.51 0.49 0.99
8 Intensity of wars 3 1.80 4.15 0.21 0.79 0.66
9 Frequency of family names 10000 1.94 15.44 0.78 0.22 0.7
10 Population of U.S. cities 40000 2.30 16.67 0.83 0.17 0.55

Table 4. Color coding for ED, SD, and CD results.

Category Very High High Fair Low Very Low

Range [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0, 0.2)
Color Blue Green Yellow Orange Red

7. Discussion

In this paper, we extended complexity measures based on Shannon’s entropy to the continuous
domain. Shannon’s continuous entropy cannot measure the average predictability of a system as its
discrete counterpart. Rather, it measures the average uncertainty of a system given a configuration
of a probability distribution function. Therefore, continuous Emergence, Self-organization, and
Complexity describe the expected predictability of a system given it follows a probability distribution
with a specific parameters set. It is common in many disciplines to describe real world systems using
a particular probability distribution function. Therefore, the proposed measures can be useful to
describe the production of information and novelty in such cases, or how information and uncertainty
would change in the system if parameters were perturbed. Certainly, the interpretation of the measures
is not given, as this will depend on the use we make of the measures for specific purposes.

From exploring the parameter space of the uniform, normal, and scale-free distributions, we can
corroborate that high complexity values require a form of balance between extreme cases. On the one
hand, uniform distributions, by definition, are homogeneous and thus all states are equiprobable,
yielding the highest emergence. This is also the case of normal distributions with a very large
standard deviation and for Power-Law distributions with an exponent close to zero. On the other
hand, highly biased distributions (very small standard deviation in G or very large exponent in
PL) yield a high self-organization, as few states accumulate most of the probability. Complexity is
found between these two extremes. From the values of σ and α, this coincides with a broad range
of phenomena. This does not tell us something new: complexity is common. The relevant aspect
is that this provides a common framework to study of the processes that lead phenomena to have a
high complexity [41]. It should be noted that this also depends on the time scales at which change
occurs [42].

Many real-world phenomena are modelled under some probability distribution assumption.
These impositions are rather a consequence of analytical convenience than intrinsic to the
phenomenon under study. Nevertheless, these usually provide a rough but useful approximation
for explanatory purposes: ranging from models of wind speed (Weibull distribution) to economic
models (Logistic distribution), PDFs “effectively” describe phenomena data. Thus, in future work, it
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would be very useful to characterize PDFs like the Laplace, Logistic, and Weibull distribution to shed
light in terms of complexity, emergence, and self-organization of systems, which can be modelled by
these PDFs.

On the other hand, it is interesting to relate our results with information adaptation [17]. In
a variety of systems, adaptation takes place by inflating or deflating information, so that the “right”
balance is achieved. Certainly, given that it is possible to derive upper and lower bounds for the
differential entropy of a PDF (e.g., [20]), it should be also possible to define analytical bounds for
the complexity measures for the given PDF. However, for practical purposes, complexity measures
are constrained by the selected range of the PDF parameters. Thus, the precise balance change from
system to system and from context to context. Still, the capability of information adaptation has to
be correlated with complexity, as the measure also reflects a balance between emergence (inflated
information) and self-organization (deflated information).

As future work, it will be interesting to study the relationship between complexity and semantic
information. There seems to be a connection with complexity as well, as we have proposed a measure
of autopoiesis as the ratio of the complexity of a system over the complexity of its environment [4,43].
These efforts should be valuable in the study of the relationship between information and meaning,
in particular in cognitive systems.

Another future line of research lies in the relationship between the proposed measures and
complex networks [44–47], exploring questions such as: how does the topology of a network affect
its dynamics? How much can we predict the dynamics of a network based on its topology? What
is the relationship between topological complexity and dynamic complexity? How controllable are
networks [48] depending on their complexity?
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