
ORIGINAL RESEARCH
published: 21 August 2018

doi: 10.3389/frobt.2018.00096

Frontiers in Robotics and AI | www.frontiersin.org 1 August 2018 | Volume 5 | Article 96

Edited by:

Claudius Gros,

Goethe-Universität Frankfurt am Main,

Germany

Reviewed by:

Christoph Richter,

Technische Universität München,

Germany

Richard Watson,

University of Southampton,

United Kingdom

*Correspondence:

Mario Zarco

zarco.mario.al@gmail.com

Specialty section:

This article was submitted to

Computational Intelligence,

a section of the journal

Frontiers in Robotics and AI

Received: 22 December 2017

Accepted: 27 July 2018

Published: 21 August 2018

Citation:

Zarco M and Froese T (2018)

Self-Optimization in Continuous-Time

Recurrent Neural Networks.

Front. Robot. AI 5:96.

doi: 10.3389/frobt.2018.00096

Self-Optimization in
Continuous-Time Recurrent Neural
Networks
Mario Zarco 1* and Tom Froese 1,2

1Departamento de Ciencias de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,

Universidad Nacional Autónoma de México, Mexico City, Mexico, 2Centro de Ciencias de la Complejidad, Universidad

Nacional Autónoma de México, Mexico City, Mexico

A recent advance in complex adaptive systems has revealed a new unsupervised learning

technique called self-modeling or self-optimization. Basically, a complex network that

can form an associative memory of the state configurations of the attractors on which it

converges will optimize its structure: it will spontaneously generalize over these typically

suboptimal attractors and thereby also reinforce more optimal attractors—even if these

better solutions are normally so hard to find that they have never been previously visited.

Ideally, after sufficient self-optimization the most optimal attractor dominates the state

space, and the network will converge on it from any initial condition. This technique

has been applied to social networks, gene regulatory networks, and neural networks,

but its application to less restricted neural controllers, as typically used in evolutionary

robotics, has not yet been attempted. Here we show for the first time that the self-

optimization process can be implemented in a continuous-time recurrent neural network

with asymmetrical connections. We discuss several open challenges that must still be

addressed before this technique could be applied in actual robotic scenarios.

Keywords: modeling, optimization, Hopfield neural network, Hebbian learning, fixed-point attractors

INTRODUCTION

Unsupervised learning techniques have many applications, especially to complex problems that
we would like to be solved automatically, but without already knowing what the correct responses
are to begin with. One such area of application is cognitive robotics: although we can prepare the
cognitive architectures of the robots by design and/or artificial evolution to some extent, real-world
scenarios always involve unexpected changes and events that a robot should ideally be able to learn
to adapt to spontaneously. One popular approach is self-modeling, for example a multi-legged
robot that adapts its controller to its physical body by evaluating its sensory feedback against an
internal simulation of its possible body morphology and how that body would interact with its
environment (Bongard et al., 2006). Another approach, which avoids the use of an explicit internal
model, is homeostatic adaptation: for example, a multi-legged robot with a homeostatic neural
controller that will cycle through structural changes to the neural network until a motion pattern is
found that permits it to maintain the neural activation states within the homeostatic range (Iizuka
et al., 2015).

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00096
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00096&domain=pdf&date_stamp=2018-08-21
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zarco.mario.al@gmail.com
https://doi.org/10.3389/frobt.2018.00096
https://www.frontiersin.org/articles/10.3389/frobt.2018.00096/full
http://loop.frontiersin.org/people/508743/overview
http://loop.frontiersin.org/people/40939/overview

Zarco and Froese Self-Optimization in CTRNNs

Both of these approaches have their advantages and
disadvantages. The use of an internal model permits more
control over how the robot responds to challenges, but it
therefore ultimately relies on explicit knowledge and detailed
representations of the kinds of challenges that could be faced
by the robot. The homeostatic mechanism remains agnostic
about the kinds of challenges that could push it outside of its
region of stability, and is therefore potentially more robust, but
its way of recovering internal stability may not always involve
recovery of the original desired behavior because there are usually
several ways of satisfying internal homeostatic constraints (Di
Paolo, 2003). It also has the disadvantage that it is defined only
negatively: something in the robot has to break down before the
homeostatic mechanism springs to action and starts changing the
connection weights of neurons until they recover stability, for
example by applying Hebbian learning (Di Paolo, 2000).

Our aim in this article is to investigate the possibility of
an unsupervised learning technique that retains the advantages
of this implicit approach to structural adaptation, but which
might be able to address some of its shortcomings by turning
the homeostatic mechanism upside down: instead of modifying
connections only when the neural controller is in an undesirable
state configuration until it finally leaves that configuration, it
may be more fruitful to apply Hebbian reinforcement precisely
during moments of stability and to repeatedly force the neural
controller into unstable regions of state space in order to enable
it to converge on and learn about different stable configurations.
In other words, could we use principles similar to homeostatic
adaptation but in a way that permits the neural controller to
self-optimize its structure in amore directed,memory-dependent
manner?

A suitable starting point for this endeavor is a discovery in
the area of complex adaptive systems made by Watson et al.
(2011b), who found a simple technique that permits a Hopfield
neural network to spontaneously optimize its own connection
weights so as to become better at satisfying the constraints that
were specified by the network’s original weight configuration.
They showed that in this way the network will converge on a
configuration that will permit it to find the best solutions to
the original problem space from any initial condition, even if
these solutions would have been practically impossible to find
before the application of the technique. The key to this apparent
magic is the combination of two capacities of the Hopfield
network that are normally studied separately: associativememory
formation and constraint satisfaction. The network is allowed
to repeatedly converge on suboptimal attractors, which are
then reinforced by Hebbian learning, with the result that the
network starts to form an associative memory of the visited
attractors, which permits it to generalize to finding new,
better attractors. Although Watson and colleagues describe this
process as self-modeling, we prefer the term self-optimization
because the technique does not involve any explicit internal
model.

We are interested in whether this process of self-optimization
can be applied in evolutionary robotics as a form of unsupervised
online learning to generate more adaptive behaviors. Many

tasks require smooth behavior that depends on the fine-
grained temporal dynamics of the neural controller, which
is why agent-based modeling of adaptive behavior typically
relies on a continuous-time continuous-state neural network
(Beer, 1997, 2008), such as the widely studied continuous-
time recurrent neural network (CTRNN). Moreover, unlike the
structure of a Hopfield network, in most cases the CTRNNs
used in these tasks are not restricted to symmetrical weights
and neurons without self-connections. In other words, even
when leaving aside the open challenges of how to implement
self-optimization in a neural controller that is coupled to a
body and an environment, it is currently not even clear how
(or if at all) the self-optimization process could operate in
a decoupled CTRNN under these dynamically much richer
conditions.

Thus, our immediate aim in this article is to demonstrate
that self-optimization can be realized in an unconstrained, albeit
decoupled, CTRNN. We find that this process spontaneously
restructures the connection weights such that the CTRNN’s
attractor landscape tends to become dominated by an attractor
that on average resolves more interneuron constraints. This
opens the door for future work on how to implement
self-optimization in coupled, brain-body-environment
systems.

At first sight it may seem rather limiting that the self-
optimization process consistently results in global fixed-point
attractors, but it has been demonstrated that monostable
controllers are not limited to single behaviors: they are capable of
exhibiting distinct adaptive behaviors by taking advantage of the
complex folds of their single basin of attraction (Buckley et al.,
2008). Moreover, when an evolutionary robotics approach is
employed to generate agent-based models of adaptive behaviors
in different task domains, it is frequently found that the most
flexible evolved solutions involve neural controllers with only
single attractors; however, the location of this attractor and the
shape of its basin of attraction are transformed appropriately
via the agent’s coupling with its environment (e.g., Froese and
Fuchs, 2012; Buhrmann et al., 2013; Agmon and Beer, 2014;
Campos and Froese, 2017). In all of these models the appropriate
network structure is evolved and remains fixed, and it would
be an important advance to find a mechanism that allows that
structure to be learned and to be open to further plastic changes
according to online changes in task demands. At the end of
the article we will consider the open challenges that remain to
be addressed in order to extend our promising findings with
decoupled CTRNNs to these kinds of “world-involving” (Di
Paolo et al., 2017) scenarios.

The rest of this article is structured as follows. In section
Hopfield Neural Networks we briefly summarize the two main
applications of Hopfield neural networks, which form the basis
of self-optimization. In section A Review of Self-Optimization in
Neural Networks we review existing work on self-optimization
in neural networks, which largely remains within the classical
formalism of the Hopfield neural network. In section Methods
we introduce our own approach, which generalizes the self-
optimization mechanism to a CTRNN. In section Results we

Frontiers in Robotics and AI | www.frontiersin.org 2 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

present the results of our study, and in section Discussion we
conclude by means of a discussion.

HOPFIELD NEURAL NETWORKS

The Hopfield neural network (HNN) was first introduced by
Little (1974) and then popularized by J. J. Hopfield. In the
literature, three main types of Hopfield neural networks can
be found depending on the type of activation function and the
temporal dynamic: discrete-time discrete-state (Hopfield, 1982),
discrete-time continuous-state (Koiran, 1994), and continuous-
time continuous-state (Hopfield, 1984). In general, these
neural network models have been used mostly for associative
memory formation (Hopfield, 1982) and optimization problems
resolution (Hopfield and Tank, 1985). We will describe these two
main applications in more detail because together they form the
basis of the self-optimization process.

Associative memory formation has two phases: learning and
recall. The learning phase is based on a set of training patterns
using a learning rule which updates the weights of the network
so as to form fixed-point attractors (hereinafter referred to as
attractors). These attractors correspond to the patterns learned
by the network, even though there exist spurious attractors which
do not correspond to any of the training patterns. In the recall
phase, a test pattern, usually an incomplete or noisy version of
a stored pattern, is set as the initial state of the network. The
states of the network are then updated until the network reaches
a stable state, i.e., an attractor. Ideally, this attractor would be the
stored pattern that one wanted to recover, however, the network
could reach a spurious attractor which in general is not desired
(Hopfield et al., 1983). Using a degraded version of the stored
patterns is possible because each attractor has a basin of attraction
which is a region surrounding the attractor in state space and
whose dynamic converge into such attractor over time. So, an
incomplete or noisy pattern that lies inside the basin of attraction
of the correct pattern will, when updating the states, converge
into the appropriate stored pattern.

On-line learning rules are suitable when the training patterns
vary over the time. The incremental Hebb rule is an instance of
this kind of rule. Some complex properties arise when Hebbian
learning is applied in a Hopfield network. Vico and Jerez (2003)
summarize these properties as follows: “(1) a generalization
process takes place when patterns belonging to the same class
(noisy versions of a prototype) are presented, activating the same
attractor, (2) classes with low or no correlation are represented
with different attractors, causing the reorganization of the
synaptic matrix, and (3) new classes that correlate with previously
stored classes involve a competitive-cooperative process among
recalled attractors and new unstructured sets of network neurons,
resulting in the formation of new attractors, while the old
representations are interfered to some extent” (p. 13).

On the other hand, optimization is based on mapping a
constraint satisfaction problem into the network topology. The
Hopfield neural network has an energy function which was used
to prove the stability of the network under the condition of
symmetric and no self-recurrent connections. These conditions

guarantee that the network always reaches a stable state, i.e.,
an attractor, regardless the initial network state. The energy
decreases until reaching this state. Convergence into attractors
is based on asynchronous state updates and, in the case of the
Hopfield models with continuous states, a strictly monotone
increasing activation function. The convergence of the network
into an attractor represents the way that the activity of the
components is coordinated so as to satisfy the constraints
imposed by the weights. The energy function must have the same
form as the function to be optimized, so that minima of the
former are also minima of the latter. In this way, the value of the
energy is interpreted as the amount of constraints that remain
unsatisfied, that is, the greater the energy the less constraints
have been satisfied. Thus, attractors are possible solutions of the
mapped problem andminima of the energy function. Usually, the
network is allowed to converge from different initial conditions
so as to find many different attractors with the hope to thereby
get the best possible solution. Nevertheless, finding the best
solutions is challenging, because the landscape of attractors
of a complex optimization problem is typically dominated by
suboptimal solutions.

A lot of research has been done on associative memory and
optimization in Hopfield networks. Many authors have noticed
different problems in both applications. However, as far as this
work is concerned, only problems related to optimization are
most relevant and are therefore briefly presented and discussed.
Joya et al. (1997) point out the three most common problems
found in many published papers:

(1) “Many described applications do not coherently make a
correspondence between the network dynamics and the energy
function associated to that network. A common situation is
using an analog neuron network with a continuous dynamics
and associating it an energy function corresponding to a
discrete neuron network” (p. 557). Solutions of the optimization
problems solved by the Hopfield network are discrete such
that the expected solutions are in the corner of the state
space hypercube. However, in Hopfield models with continuous
activation function an extra term is added to the energy function.
This term is often called the integral term and causes the presence
of attractors inside the hypercube. Therefore, the asymptotically
stable states are in the neighborhood of the hypercube corners
(Joya et al., 1997). The aim of the strategies for trying to avoid this
problem is to make negligible the effect of the integral term. The
most popular approach is using the continuous-time Hopfield
model in the high-gain region. In this region, the gain of the
activation function provokes an increment in the slope of the
sigmoid function such that it resembles the sign function used
in the discrete-state Hopfield models (Hopfield, 1984).

(2) “The energy function is forced to decrease only if the
network evolves according to its dynamical equations. If these
equations are continuous (differential equations), they can not
be strictly represented by means of a computer simulation. That
is, the simulation implies the discretization of these equations
(difference equations), so that the bigger is the simulation step
the more different are the real and the theoretical network
behavior” (p. 557). This problem can be solved by ensuring
numerical stability of the integration method. For example, the

Frontiers in Robotics and AI | www.frontiersin.org 3 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

Forward Euler method is stable if the step is less than twice
the smallest time-constant of the network (Blynel and Floreano,
2002). However, if there exist self-recurrent connections, the
Euler method might increase occasionally the energy when the
network is converging into an attractor (Feng and Douligeris,
2001).

(3a) “The energy function of a Hopfield network has many
local minima. Consequently, the network probably will reach
an equilibrium state that does not correspond to a problem
solution” (p. 557). It is important to clarify the concept of
stability in Hopfield networks. Usually, the network is said to
be Lyapunov stable if the conditions of symmetric and no
self-recurrent weights, and of a strictly monotone activation
function are satisfied. However, Liao et al. (2007) point out
that Lyapunov stability and Hopfield stability are different.
The network is said to be Hopfield stable if the set of
equilibria of the dynamical system which describes the network
is attractive. The set of equilibria is said to be attractive if
for any initial condition sufficiently near some equilibria, the
solution of the system tends asymptotically to such element
of the set of equilibria. Then, the energy function method
only guarantees that a solution tends to an equilibrium,
but this state may be unstable in the sense of Lyapunov.
Also, this method can not answer if a specific equilibrium
is stable or attractive. Furthermore, attraction of the set of
equilibria is not equivalent to the attraction of every equilibrium.
Consequently, the network might not be capable of reaching
superior optima.

(3b) “The search of evolution strategies to move the
network out of local minima and take it to a global
minimum is a main task in this field”. Several efforts
have been made for addressing this issue depending on
the features of the problem required to be solved (Smith,
1999). Apart from all the research done on the deterministic
Hopfield models, the approaches for avoiding local minima are
mainly based on using heuristic methods together with the
network (Potvin and Smith, 2003) or applying its stochastic
counterpart, namely the Boltzmann machine (Kirkpatrick et al.,
1983).

Recently, Watson et al. (2011b) proposed an algorithm
for enhancing the ability of the discrete-time discrete-state
Hopfield neural network to find configurations that minimize
constraints in tension and therefore to minimize energy. The
process takes advantage of both the network’s power of learning
patterns and its ability of minimizing conflicts between states
during the convergence into a stable state. At first sight the
operation of these applications seems incompatible. On the
one hand, the weights change over time when the network
is learning patterns. On the other hand, the weights are
maintained for solving an optimization problem because the
attractors, i.e., possible solutions, are defined by them. Despite
this, Watson and colleagues developed a process based on
allowing the neural network to form an associative memory of
its own attractors—hence permitting it to learn its own previous
dynamic patterns in an unsupervised manner—and thereby
optimizing the network’s capacity for optimization of constraint
satisfaction.

A REVIEW OF SELF-OPTIMIZATION IN
NEURAL NETWORKS

The Basic Self-Optimization Mechanism
The self-optimization framework was originally developed for
being applied in discrete-time discrete-state Hopfield neural
network with symmetric weights and self-recurrent connections
set to either 0 or 1. This model is updated according to Equation
(1) in Table 1. The iterative algorithm consists in the following
steps:

S1) the neuron states are randomized,
S2) the network is allowed to converge from this random state

configuration to an attractor – this is called the “relaxation”
of the network and lasts t̂ time steps, and

S3) the network learns its current configuration, i.e., the
attractor reached at convergence, according to the
Hebbian rule shown in Equation (2).

The network is usually allowed to relax using a fixed t̂ such

that the network consistently reaches an attractor. Notice that

the time steps for reaching an attractor, t∗, is smaller than t̂.
Depending on how small t∗ is compared to t̂, learning could be

done either at the end of the relaxation or at every time-step.
Ideally, the iterative process stops when a single global attractor
remains in the state space.

The energy function in Equation (3) is associated with

the discrete-time discrete-state Hopfield model. Watson and
colleagues use the so-called original energy function shown in

Equation (4) to compute the degree to which a state configuration

resolves the original constraints. This function uses the original
weights of the problem and the state configuration at the end

of the relaxation. Both energy functions have the same quadratic

form, the only difference is the constant in the function proposed
by Hopfield. The lack of this constant does not affect the function
of illustrating the amount of satisfied constraints.

There exist three conditions for the iterative algorithm to
work:

C1) the initial dynamic of the system exhibits multiple
attractors,

C2) the system configurations are repeatedly relaxed from
different initial conditions such that the system samples
many different attractors on a timescale where connections
change slowly, and

C3) the system spends most of its time at attractors.

The condition C3 is mandatory if learning is applied at every

time-step, but such condition could be relaxed if learning is done
at the end of the relaxations. Presumably, reinforcing states near

an attractor should be sufficient since they would have enough

sub-pattern in common with such attractor, however a thorough

investigation has never been done.
As a consequence of these conditions, there are two practical

requirements:

R1) the learning rate must be small so that the system reaches
a wide number of attractors and poor local optima are not
reinforced;

Frontiers in Robotics and AI | www.frontiersin.org 4 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

TABLE 1 | Comparison of two implementations of self-optimization.

Reference Watson et al., 2011b Zarco and Froese, 2018

Update rule si (t+ 1) = θHT

[

N
∑

j

ωij (t) sj (t)

]

(1) si (t+ 1) = σ

[

N
∑

j

ωij (t)sj (t)

]

(5)

Learning rule ωij (t+ 1) = ωij (t) + δsi (t) sj (t) (2) ωij (t+ 1) = ωij (t) + δsi (t) sj (t) (6)

Energy function E = − 1
2

N
∑

i,j
ωij (t)si (t)sj (t) (3) E = − 1

2

N
∑

i,j
ωij (t)si (t)sj (t)+

N
∑

i

∫ si (t)
0

σ−1 (x)dx (7)

Original energy function E0 = −
∑N

i,j αij (t)si (t)sj (t) (4) E0 = − 1
2

N
∑

i,j
αij (t)si (t)sj (t)+

N
∑

i

∫ si (t)
0

σ−1 (x)dx (8)

N is the number of neurons, si is the state of the neuron i, ωij is the weight between neuron i and j, θHT is a Heaviside threshold function, σ is a bipolar sigmoid function, and δ is the

learning rate.

R2.1) if learning is applied at the end of the relaxation, t∗ < t̂ so

that the system reaches the stable state before reinforcing

it; and
R2.2) if learning is applied at every time-step, t∗ ≪ t̂ so that

the system spend little time at the transient dynamic and
the stable state is properly reinforced during the relaxation
time.

Due to t∗ ≪ t̂, learning at every time-step is possible since a
learning rate used at the end of the relaxation could be divided
by t̂ such that the network can imprint reliably its current
configuration.

According to Watson et al. (2011c), the self-optimization
process is grounded in three properties of the discrete-time
discrete-state Hopfield model:

P1) Associative memory of attractors. In general, it is more likely

that the network converges into locally optimal solutions
to the problem just by relaxation. Reinforcing its own

attractors, i.e., forming an associative memory of its own

attractors, has the effect of increasing the basin of attraction
of these locally optimal attractors.

P2) Inverse correlation between energy and size of basins of
attraction (Kryzhanovsky and Kryzhanovsky, 2008). It has
been proven that low energy attractors tend to have

larger basins of attraction. Therefore, when the network
is reinforcing its attractors, the network tends to converge

more into low-energy attractors more often than higher-

energy attractors.
P3) Generalization based on a combination of properties P1 and

P2.

There are two kinds of generalization depending on the structure
of the problem (Watson et al., 2009, 2011a):

G1) Noise removal in unstructured problems (Branchtein and
Arenzon, 1992). In these problems, which can be defined by
random connectivity, there are globally optimal attractors

which overlap on average equally with all the locally optimal

attractors in their vicinities. The former are located in the
center mass (or near it) of the latter. The network tends

to converge in locally optimal attractors in the vicinity of
a global optimum. Thus, the reinforcing of the former leads
to the enlargement of the basin of attraction of the latter.

G2) Spurious attractors in structured problems (Ju-Seog et al.,
1992). In these problems, which can be defined by modular
connectivity, there are large semi-independent modules
that are separated by energy barriers. The attractor in
modules have sub-pattern in common with other attractors
in other modules. The network reaches easily modules
with locally optimal attractors. The reinforcing of these
attractor could create spurious attractors which have sub-
patterns in common with learned attractors. Spurious
attractors could represent better possible solutions of the
original optimization problem. Thus, the reinforcing of
local attractors leads to the enlargement of the basin of
attraction of spurious attractors.

In both cases, either generalization by noise removal or spurious
attractors, the enlargement of the basin of attraction of better
attractors leads to these outcompeting only locally optimal
attractors. These new representations can be used as attractors
to be reinforced by convergence or, if they are distant, their
basins of attraction can continue being enlarged. In general, the
reinforcement of locally optimal attractors can reinforce globally
optimal attractors since, at least in structure problem spaces, they
have several sub-patterns in common, even if some of them have
not been reached previously.

Step S1 of the process, i.e., the randomization of the
initial state configuration, makes possible the exploration
of the state space in order to converge on and reinforce
many different attractors. Meanwhile, Hebbian learning
makes possible the exploitation of the correlation between
locally and globally optimal attractors. Learning does not
change the configuration of attractors in the state space,
but makes possible the enlargement of the best basins of
attraction, and therefore leads to a competition between
attractors.

Variations in Neural Network Topology
Table 2 shows the types of constraints used to define the
weights in different works in which the self-optimization
process was studied by Watson and colleagues. Symmetric
weights with non-negative self-recurrent connections is a good
assumption because the convergence of a discrete-time discrete-
state Hopfield network into attractors, regardless the initial
condition, can be guaranteed (Hopfield, 1982). The constraint

Frontiers in Robotics and AI | www.frontiersin.org 5 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

TABLE 2 | Types of condition used in the research done by Watson and

colleagues.

References Condition Definition (αij ≡ ωij (t = 0))

Watson et al.,

2009

Spatial αij ∈
(

0, e−d
)

where d = mod(|1− j| , N)

Modular If
⌊

i
k

⌋

=
⌊

j
k

⌋

and i 6= j, |αij | = 1

Otherwise, αij = p, with p < 0.01

Watson et al.,

2011b

Random If i = j, αij = 0 Otherwise αij ∈ {−1, 1}

Modular If
⌊

i
k

⌋

=
⌊

j
k

⌋

and i 6= j, |αij | = 1

Otherwise, αij = 0.01

Watson et al.,

2011a

Random Sparse αij ∈ {−1, 0, 1}

the density of nonzero connections is m
N

Modular If
⌊

i
k

⌋

=
⌊

j
k

⌋

and i 6= j, |αij | = 1

Otherwise, αij = 0.01

Watson et al.,

2011c

Random (RC) If i = j, αij = 1 Otherwise, αij = {−0.01, 0.01}

Modular αij = RC
(⌊

i
k

⌋

,
⌊

j
k

⌋)

N is the number of neurons, k is the number of modules, and m
N
means m dependences

per node on average. In the random constraints condition, binary connection weights

{−1, 1} are chosen with equal probability; in the modular constraints condition, k = 5 and

αij > 0 with probability 0.8; and, in the random spatial constraints, m = 8 and {−1, 1} are

chosen with equal probability.

of symmetric weights would be easy to relax in this model
given the fact that an asymmetrical weight matrix, W, could be

changed for its symmetric version,
(

W+WT
)

2 , without changing
the value of the energy (Vidyasagar, 1998). According to Xu
et al. (1996), the constraint of no self-recurrent weights can
be avoided as long as ωii ≥

(

1
2

)
∑N

j=1,j 6=i

∣

∣ωij − ωji

∣

∣. The

energy is called regular if this condition is met, however,
the set of minima of the energy function is a subset of the
set of all stable states of the network. On the other hand,
if the condition ωii ≤ −

(

1
2

)
∑N

j=1,j 6=i

∣

∣ωij − ωji

∣

∣ is met, the

energy is called normal, and the set of all stable states of
the network is a subset of the set of minima of the energy
function.

Further Variations and Extensions
Table 3 presents further studies that explored the general
conditions under which self-optimization can take place.
Moreover, the underlying principle of the self-optimization
process has been used to model the evolution of gene
regulation networks where changes in the activation level
of the genes were computed according to the dynamic
of a discretized CTRNN (Watson et al., 2010). However,
in that work gains and time constants were fixed values,
and there were no bias terms. Also, the energy function
had the quadratic form as that in Equation (4) because
they were measuring epistasis. Thus, the aim of that work
was somewhat different from our goal of generalizing the
self-optimization process to the kind of CTRNNs used in
evolutionary robotics. Moreover, Beer (1995) demonstrated the
complexity of the CTRNN state space, i.e., the emergence of
several different limit sets, of one- and two-neuron recurrent
CTRNNs, when the parameters are changed. Therefore, we still

TABLE 3 | Activation function, states range, and weights range used in work that

explored the general conditions under which self-optimization takes place in

complex networks.

References Activation function States Weights

Watson et al.,

2010

Sigmoid function (tanh(x/10)) [−1, 1] ωij is not bounded

Watson et al.,

2011a

Heaviside threshold function {−1, 1} −1≤ ωij ≤ 1

Woodward

et al., 2015

Saturated linear function [0, 1] −1≤ ωij ≤ 1

Zarco and

Froese, 2018

Sigmoid function (2
1+e−x

− 1) [−1, 1] −1≤ ωij ≤ 1

face the challenge of extending the self-optimization framework
so that it can be applied to CTRNNs with arbitrary gains,
arbitrary time constants, and asymmetric and self-recurrent
connections.

METHODS

In this work, a fully connected CTRNN is used. The network
consists of N nodes and it is updated asynchronously according
to the following equation:

τi ṡi = −si +

N
∑

j=1

ωjiσ
(

gj
(

sj + θj
))

(9)

where si is the activation of node i, ωji is the strength of a
connection from node j to node i, τi is the activity decay constant
(or time constant), gi is the gain of the sigmoid function, θi is the
following bias term (Golos et al., 2016):

θi = −
1

2

N
∑

j=1

ωij (10)

and σ is the following sigmoid activation function (Hoinville
et al., 2011):

σ (x) =
2

1+ e−x
− 1 (11)

Vj(t) = σ (gj(sj(t)+ θj)) is called the output of the neuron j, and
we will refer to 〈V1, . . . ,VN〉 as the output state space hypercube.

Golos et al. (2016) demonstrated the emergence of multiple
fixed-point attractors using a 998 node continuous-time
continuous-state Hopfield model in the high-gain region, with
symmetric weights and the bias term computed according
to Equation (10). In this work, this equation is an educated guess
because it is used in a small non-restricted Hopfield model, that
is, with asymmetric weights and outside the high-gain region.
The authors cannot guarantee that the equation always generates
enough attractors given the amount of parameters that could be
changed in the network.

The steps of the self-optimization iterative algorithm for
CTRNNs are the following:

Frontiers in Robotics and AI | www.frontiersin.org 6 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

S1) node activations, si, are drawn from a uniform random
distribution limited by a lower and upper bound,

S2) the network is relaxed, during ť units of time, from this
random configuration, and

S3) the weights are updated at the end of the relaxation
according to the following equation:

ωij (t + 1) = ωij (t) + δVi (t)Vj (t) (12)

where δ is a learning rate and each ωij is restricted to be between
[−1, 1]. Ideally, the iterative process continues until the network
converges into a single attractor for any initial state configuration.
The lower and upper bounds are not limited to −1 and 1,
respectively, as in previous works because, depending on the
values of the parameters, a broader range could be necessary for
exploring the state space.

Due to the non-restricted connections and parameters, neither
the fast convergence into an attractor nor the convergence into
an attractor in every relaxation period is guaranteed. Therefore,
Hebbian learning is applied at the end of the relaxation for two
reasons: (1) given the possibility of a long transient dynamic, it
is more likely that the network would have reached an attractor
at the end of that time, thus reinforcing such attractor or, at
least, (2) the network would have reached a basin of attraction,
hence reinforcing a point in the neighborhood of the attractor
which probably has enough sub-patterns in common with such
attractor. However, it is also possible that there exist other kinds
of limit sets but, since Hebbian learning tends to reduce the
complexity of the state space (Siri et al., 2008), we do not consider
them further here.

For the experiments, the network had 30 nodes, time constants
were randomized between [1, 10] using a uniform distribution,
gains were randomized between [10, 20] using a uniform
distribution, bias terms were computed using the Equation
(10), ť = 500 units of time, and the Equation (9) was integrated
using the forward Euler integration method with a step size of
0.1. The connection matrix was initialized using 100 different
weight configuration per each type of condition: symmetric
random condition (SR), asymmetric random condition (AR),
symmetric modular condition (SM), and asymmetric modular
condition (AM). Table 4 shows the type of conditions used
in the experiments of this work. In the symmetric random
condition, the values of αSR

ij were chosen using a uniform random

distribution; in the symmetric modular condition, k = 3
and αSM

ij > 0 with probability 0.8; in the asymmetric random

condition, q > 0 with probability 0.5 and the asymmetric
connections are defined adding a value from a uniform random
distribution to q ; and, in the asymmetric modular condition,
asymmetric connections are defined adding a value from a
uniform random distribution to a symmetric modular matrix.

Given that it is difficult to determine a common learning rate
for the four conditions, the learning rates was found empirically
such that δ = 0.001 for the symmetric cases, and δ = 0.0005 for
the asymmetric ones. Both learning rates were estimated through
many trials, setting a specific number of relaxations during
self-optimization, to avoid suboptimal convergence. In other

TABLE 4 | Types of conditions used to define weight matrices in this work, where

k is the number of modules.

Condition Definition (αij≡ωij(t = 0))

Symmetric Random (SR) If i = j, αSR
ij

∈ [−1, 1]

Otherwise αSR
ij

∈ [−0.1, 0.1]

Asymmetric Random (AR) If i = j, αAR
ij

= αSR
ij

αAR
ij

= q+ [−0.1, 0.1] with |q| = 0.1

Symmetric Modular (SM) If
⌊

i
k

⌋

=
⌊

j
k

⌋

, |αSM
ij

| = 1

Otherwise
∣

∣

∣
αSM
ij

∣

∣

∣
= 0.01

Asymmetric Modular (AM) If i = j, αAM
ij

= αSM
ij

Otherwise αAM
ij

= α
SM

ij
+ [−0.01, 0.01]

words, the learning rates were chosen to increase the chance
that the networks reinforce enough attractors such that the
best solutions outcompete suboptimal ones. If the learning rate
for the symmetric cases were used for all the experiments, the
asymmetric networks would converge into suboptimal attractors.
On the contrary, if the learning rate for the asymmetric cases were
used, the symmetric networks would probably require to increase
the number of relaxations in order for the network to converge
into a single attractor.

CTRNNs have been used before to solve specific constraint
satisfaction problems using a generalized energy function
(Ettaouil et al., 2013; Haddouch et al., 2013). In that approach,
an energy function is defined by taking into account the
objective function and a function to penalize the violation
of task-correlated constraints. After that, weights are defined
according to this function and a parameter setting procedure is
applied such that each attractor corresponds to a solution of the
problem. However, our approach ismore general because weights
and parameters can be arbitrarily set, even setting asymmetric
connections, and therefore we cannot guarantee the one-to-one
correspondence between attractors and solutions to the original
problem. Moreover, Zarco and Froese (2018) showed that, in the
case of discrete-time continuous-state Hopfield neural networks,
there is no correlation between the energy and the number of
satisfied constraints. Accordingly, they argued that it is better
to use the number of satisfied constraints directly rather than
the energy function. Thus, in the current work the number of
satisfied constraints was measured considering that a constraint
is satisfied in a CTRNN if αijViVj > 0, where Vi ∈ [−1, 1].

RESULTS

The experiments consisted in three stages per each type of
condition. First, an initial weight configuration was set and
the network relaxed from 100 different random initial states
configurations. This constitutes the “before-learning” stage.
Then, the self-optimization process was applied using 1,000
relaxations. Finally, the network was relaxed from 100 different
random initial states configurations using the modified weight
configuration obtained by the self-optimization process. This
constitutes the “after-learning” stage. The amount of satisfied
constraints was measured at the end of each relaxation in the

Frontiers in Robotics and AI | www.frontiersin.org 7 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

“before-learning” and the “after-learning” stages. This procedure
was repeated 100 times per each one of the 100 weight
configurations using a different random number seed.

To measure the success of the self-optimization process, we
decided to run a t-test per each repetition, instead of considering
the whole data set of satisfied constraints, for two reasons: (a)
as long as there is some effect size or, to put it differently, the
effect size is not zero, statistical significance will be almost always
demonstrated with a sufficiently large sample size (Sullivan and
Feinn, 2012); and (b) each repetition can be considered as
an individual experiment given that each weight configuration
is tested many times in the “before-learning” and the “after-
learning” stages using different random number seeds. Thus, the
computation of the p-values reported in this work consisted in
two steps. First, we calculated the p-values of each one of the 100
repetitions per each one of the 100 different weight configuration.
Then, we calculated the mean of those p-values.

Random Constraints Conditions
Figures 1A,B show the attractor states reached by a network with
symmetric and asymmetric random connections, respectively, in
the before-learning phase (relaxations 1–1000), during the self-
optimization process (relaxations 1001–2000), and in the after-
learning phase (relaxations 2001–3000). In the before-learning
phase, the network was allowed to relax and it converged into
many different attractors; overall, a great number of suboptimal
attractors were visited, but just a few attractors that could be
considered as good solutions were reached. During the learning
phase, the self-optimization process shifted the distribution to
these better attractors, but without significantly exceeding the
attractors that were accessible before. As can be seen, the network
converged into better solutions as the number of relaxations
increase until one single attractor remained. Finally, in the after-
learning phase, where the network was allowed to relax without
still applying learning, this better attractor was reached every
relaxation because it is either the only attractor in the state space
or at least the more likely to be reached.

Figures 2A,B show the distribution of the number of satisfied
constraints in symmetric and asymmetric connections for
random constraints conditions. The total number of connections
in a 30-node network is 900. On average, 54.1835% (487.6517
connections) and 57.2478% (515.2306 connections) constraints
were satisfied before self-optimization in the symmetric and
asymmetric case respectively; while the corresponding numbers
of satisfied constraints after self-optimization were 55.2443%
(497.1987 connections) and 58.1547% (523.3925 connections).
This difference turned out to be little significant given the p-value
of 0.0640 in the symmetric case and the p-value of 0.0705 in the
asymmetric one.

Modular Constraints Conditions
Figures 1C,D show the attractor states reached by a network with
symmetric and asymmetric modular connections, respectively,
in the before-learning phase (relaxations 1–1000), during the
self-optimization process (relaxations 1001–2000), and in the
after-learning phase (relaxations 2001–3000). As in the random
constraints conditions, in the before-learning phase, the network

converged into many different attractors of which many of
them were suboptimal and only few ones could be taken as
good solutions. Nevertheless, in the modular cases, the self-
optimization produced a significant shift of the distribution, such
that after the process the network was able to access solutions that
were not accessible before. The network converged into better
attractors as the number of relaxations increase until one single
attractor remained which usually could not be reached before.
Finally, the network converged into this attractor every relaxation
in the after-learning phase because it became either the only
attractor in the state space or at least themore likely to be reached.

Figures 2C,D show the distribution of the number of satisfied
constraints in symmetric and asymmetric connections for
modular constraints conditions. On average, 61.8042% (556.2378
connections) and 62.1478% (559.3308 connections) constraints
were satisfied before self-optimization in the symmetric and
asymmetric case respectively; while the corresponding numbers
of satisfied constraints after self-optimization were 71.7320%
(645.5885 connections) and 72.3285% (650.9570 connections).
This difference turned out to be very significant given the p-value
of 1.1235× 10−5 in the symmetric case and the p-value of 4.58800
× 10−6 in the asymmetric one.

DISCUSSION

The results in Figure 1 show that the self-optimization process
works properly since it increases the basins of attraction of better
attractors, as measured by their ability to satisfy interneuron
constraints. As can be seen during the self-optimization
phase (relaxations 1001-2000), it becomes increasingly likely
that a CTRNN converges on attractors which satisfy more
constraints, compared with those that the network can reach
before reinforcing its visited attractor state configurations. The
reinforced attractors start outcompeting each other over time.
This results in, ideally, the existence of just one optimal attractor
in the activation state space, which is near or in some corner
of the hypercube. As stated by Watson et al. (2011b) for the
case of discrete-time discrete-state Hopfield networks, the self-
optimization process in CTRNNs works much better on modular
or structured problems because it exploits the correlation
between local and global optima. This is demonstrated by the
fact that after self-optimization (relaxations 2001–3000), modular
networks tend to converge on solutions that are better at
satisfying constraints than any solution they were able to find
before self-optimization (relaxations 1–1000).

Figure 2 shows that the results found in single examples are
also statistically true. As can be seen, there exist small differences
between the distributions in Figures 2A,B. The differences
between the percentages of satisfied random constraints before
and after self-optimization are 1.0608 and 0.9070% when
symmetric and asymmetric connections are set, respectively. The
little-significant p-values (0.0640 and 0.0705) of these cases are
then explained by the slight increase in the number of satisfied
constraints due to the self-optimization process. These results
were expected given that the process is not able to exploit the
regularities of the connections.

Frontiers in Robotics and AI | www.frontiersin.org 8 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

FIGURE 1 | Examples of the self-optimization process in four different constraints conditions. Each figure shows the attractor states visited before learning (relaxations

1–1000), during the self-optimization process (relaxations 1001–2000), and after learning (relaxations 2001–3000). Note that neural network convergence after

activations are set to arbitrary values, and the number of satisfied constraints are counted after the completion of a relaxation.

FIGURE 2 | Histogram of the number of satisfied constraints in the “before learning” stage (gray) and the “after-learning” stage (blue) for four different constraints

conditions. Note that the relative frequency was calculated following 1000000 relaxations.

On the other hand, there exist big differences between
the distributions in Figures 2C,D. The differences between the
percentages of satisfied modular constraints before and after
self-optimization are 9.9278 and 10.1807% when symmetric
and asymmetric connections are set, respectively. Thus, the
very-significant p-values (1.1235× 10−5 and 4.58800× 10−6) of
these cases are explained by the meaningful rise in the number

of satisfied constraints due to learning. In this case, the self-
optimization process is able to exploit the correlation between
local and global optima as stated before. This is not to say that
the experiment of the random case failed as can suggest a p-value
lower than 0.05; on the contrary, the self-optimization process
works on unstructured problems but the results are not as good
as in the modular case.

Frontiers in Robotics and AI | www.frontiersin.org 9 August 2018 | Volume 5 | Article 96

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

We have shown that the self-optimization works for
CTRNNswith self-recurrent and either symmetric or asymmetric
connections. The results demonstrate that the self-optimization
process has the potential for a broader range of applications than
previously thought.

FUTURE WORK

As we mentioned in the introduction, a particularly suitable
area for future research could be the “world-involving” type
of scenarios generated by means of an evolutionary robotics
approach: when an agent is evolved to exhibit some kind
of adaptive behavior, it often turns out that its CTRNN
controller only exhibits a single attractor and yet is still
capable of rich dynamics because its attractor landscape is
continuously modulated by the agent’s embodied coupling with
the environment in a task-relevant manner. In this type of
scenario, the evolutionary optimization process basically results
in a CTRNN structure that makes the agent ready to be
interactively guided by the world. These findings go against the
perspective of classical cognitive science, according to which the
internal dynamics of the agent’s brain carry all of the weight of
cognition, but they make sense from a dynamical perspective
that treats behavior and cognition as a relational property of a
brain-body-environment system (Beer, 2000).

Now that we know that the self-optimization process works
for decoupled CTRNNs, a challenge for future research is to
determine how it could be employed instead of an evolutionary
process to generate the appropriate structure while coupled to
the agent’s body and environment. If this could be successfully
implemented, the advantage would be that the agent could learn
the best world-involving solutions during its lifetime, and also
readjust its internal structure as the demands of the task change
over time.

One key challenge lies in making sure that the optimal
attractor that is going to be reinforced by the self-optimization
process is one that is most relevant for the task. Starting the
process with a random CTRNN, as we have done here to show
its generality, could for example just lead to an agent that
does precisely nothing or just moves in one direction. This
problem of how to connect the internal plastic mechanism with
the desired behavior in a meaningful manner is already well
known from the homeostatic adaptation mechanism literature
(Iizuka and Di Paolo, 2008). One way of addressing it would
be to evolve the starting configuration of the CTRNN, along
with the parameters of the self-optimization process, such that

the agent tends to improve its performance over trials. Perhaps

this starting configuration could even be evolved to be suitable
for self-optimization of distinct adaptive behaviors, for example
depending on which type of trial it finds itself in, similar to what
has already been achieved with non-plastic CTRNN controllers
(Izquierdo and Buhrmann, 2008).

At this point it is not yet clear how explicit one needs to make
the self-optimization process for it to evolve properly. Parameters
that could be fine-tuned by artificial evolution include the
learning rules, learning rates, reset mechanism, and number of
relaxations. Alternatively, it could be sufficient to simply evaluate
fitness of the solutions in terms of their relative improvement of
performance during a trial, similar to what has been achieved for
decoupled CTRNNs evolved to exhibit ultrastability (Izquierdo

et al., 2013). That work has demonstrated that a CTRNN can
indeed be evolved to iterate through a number of different

attractors, and to do so in a context-sensitive manner, by
temporarily passing through a metastable regime. In general, we
expect that making the self-optimization process more explicit
will facilitate the evolution of a workable solution, but it may also
preclude the evolution of more elegant implementations of the
process.

An interesting open question is whether there will continue
to be a role for decoupled dynamics even when the CTRNN
is embodied in an agent. To find out what works best it may
be useful to explicitly give the agent the ability to temporarily
switch on and off its coupling with the environment, as has
been explored in a different context by Iizuka and Ikegami
(2004). If there is some penalty for poor performance, it is
likely that agents will evolve to self-optimize during short
periods of sensorimotor decoupling in order for the temporary
randomization of neuronal activations not to lead to unwanted
behavior. At the same time being decoupled will prevent sensory
stimulation from interfering with the self-optimization process,
thereby removing the formal problem of how to implement the
process in a coupled CTRNN.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by UNAM-DGAPA-PAPIIT project
IA104717.

REFERENCES

Agmon, E., and Beer, R. D. (2014). The evolution and analysis of action switching

in embodied agents. Adapt. Behav. 22, 3–20. doi: 10.1177/10597123135

11649

Beer, R. D. (1995). On the dynamics of small continuous-time recurrent neural

networks. Adapt. Behav. 3, 469–509.

Beer, R. D. (1997). The dynamics of adaptive behavior: a research

program. Rob. Auton. Sys. 20, 257–289. doi: 10.1016/S0921-8890(96)

00063-2

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends Cogn. Sci. 4,

91–99. doi: 10.1016/S1364-6613(99)01440-0

Beer, R. D. (2008). “The dynamics of brain–body–environment systems: a status

report,” in Handbook of Cognitive Science, eds P. Calvo and T. Gomila (San

Diego, CA: Elsevier), 99–120. doi: 10.1016/B978-0-08-046616-3.00006-2

Blynel, J., and Floreano, D. (2002). “Levels of dynamics and adaptive behavior in

evolutionary neural controllers,” in From Animals to Animats 7: Proceeding of

the 7th International Conference on Simulation on Adaptive Behavior, eds B.

Hallam, D. Floreano, J. Hallam, G. Hayes, and J.-A. Meyer (Edinburgh: MIT

Press), 272–281.

Frontiers in Robotics and AI | www.frontiersin.org 10 August 2018 | Volume 5 | Article 96

https://doi.org/10.1177/1059712313511649
https://doi.org/10.1016/S0921-8890(96)00063-2
https://doi.org/10.1016/S1364-6613(99)01440-0
https://doi.org/10.1016/B978-0-08-046616-3.00006-2
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines

through continuous self-modeling. Science. 314, 1118–1121.

doi: 10.1126/science.1133687

Branchtein, M. C., and Arenzon, J. J. (1992). Categorization and generalization in

the Hopfield model. J. Phys. I. 2, 2019–2024.

Buckley, C. L., Fine, P., Bullock, S., and Di Paolo, E. (2008). “Monostable

controllers for adaptive behaviour,” in From Animals to Animats 10: 10th

International Conference on Simulation of Adaptive Behaviour, eds M. Asada,

J. C. T. Hallam, J.-A. Meyer, and J. Tani (Berlin; Heidelberg: Springer),

103–112.

Buhrmann, T., Di Paolo, E., and Barandiaran, X. (2013). A dynamical

systems account of sensorimotor contingencies. Front. Psychol. 4:285.

doi: 10.3389/fpsyg.2013.00285

Campos, J. I., and Froese, T. (2017). “Referential communication as a collective

property of a brain-body-environment-body-brain system: a minimal cognitive

model,” in 2017 IEEE Symposium Series on Computational Intelligence (SSCI)

(Honolulu, HI: IEEE Press).

Di Paolo, E. A. (2000). “Homeostatic adaptation to inversion of the visual field and

other sensorimotor disruptions,” in From Animals to Animats 6: Proceedings of

the Sixth International Conference on Simulation of Adaptive Behavior, eds J.-A.

Meyer, A. Berthoz, D. Floreano, H.L. Roitblat, and S.W. Wilson (Cambridge,

MA: MIT Press).

Di Paolo, E. A. (2003). “Organismically-inspired robotics: Homeostatic adaptation

and teleology beyond the closed sensorimotor loop,” in Dynamical Systems

Approach to Embodiment and Sociality, eds K. Murase and T. Asakura

(Adelaide, SA: Advanced Knowledge International).

Di Paolo, E. A., Buhrmann, T., and Barandiaran, X. (2017). Sensorimotor Life: An

Enactive Proposal. Oxford: Oxford University Press.

Ettaouil, M., Haddouch, K., Hami, Y., and Loqman, C. (2013). “Neural networks

approach for solving the Maximal Constraint Satisfaction Problems,” in 2013

8th International Conference on Intelligent Systems: Theories and Applications

(SITA)) (Rabat), 1–6.

Feng, G., and Douligeris, C. (2001). “The convergence and parameter relationship

for discrete-time continuous-state Hopfield networks,” in Proceedings of

International Joint Conference on Neural Networks (Washington, DC: IEEE),

376–381.

Froese, T., and Fuchs, T. (2012). The extended body: a case study in the

neurophenomenology of social interaction. Phenomenol. Cogn. Sci. 11,

205–235. doi: 10.1007/s11097-012-9254-2

Golos, M., Jirsa, V., and Daucé, E. (2016). Multistability in large

scale models of brain activity. PLoS Comput. Biol. 11:e1004644.

doi: 10.1371/journal.pcbi.1004644

Haddouch, K., Ettaouil, M., and Loqman, C. (2013). Continuous Hopfield network

and quadratic programming for solving binary constraint satisfaction problem.

J. Theor. Appl. Inform. Tech. 56, 362–372.

Hoinville, T., Siles, C. T., and Hénaff, P. (2011). Flexible and

multistable pattern generation by evolving constrained plastic

neurocontrollers. Adapt. Behav. 19, 187–207. doi: 10.1177/10597123114

03631

Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.

doi: 10.1073/pnas.79.8.2554

Hopfield, J. J. (1984). Neurons with graded response have collective computational

properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81,

3088–3092. doi: 10.1073/pnas.81.10.3088

Hopfield, J. J., Feinstein, D. I., and Palmer, R. G. (1983). ‘Unlearning’ has a

stabilizing effect in collective memories. Nature 304, 158–159.

Hopfield, J. J., and Tank, D. W. (1985). “Neural” computation of decisions in

optimization problems. Biol. Cybern. 52, 141–152.

Iizuka, H., and Di Paolo, E. A. (2008). “Extended homeostatic adaptation:

improving the link between internal and behavioural stability,” in FromAnimals

to Animats 10: 10th International Conference on Simulation of Adaptive

Behavior, eds M. Asada, J. C. T. Hallam, J.-A. Meyer, and J. Tani (Berlin:

Springer-Verlag).

Iizuka, H., and Ikegami, T. (2004). Simulating autonomous coupling

in discrimination of light frequencies. Connect. Sci. 16, 283–299.

doi: 10.1080/095400904123314786

Iizuka, H., Nakai, H., and Yamamoto, M. (2015). “Applying homeostatic

neural controller to multi-legged robot and adaptivity to novel disruptions,”

in Proceedings of the European Conference on Artificial Life 2015, eds

P. S. Andrews, L. S. D. Caves, R. Doursat, S. J. Hickinbotham, F. A.

C. Polack, S. Stepney, T. Taylor, and J. Timmis (York: MIT Press),

264–270.

Izquierdo, E., Aguilera, M., and Beer, R. D. (2013). “Analysis of ultrastability

in small dynamical recurrent neural networks,” in Advances in Artificial Life,

ECAL 2013: Proceedings of the Twelfth European Conference on the Synthesis

and Simulation of Living Systems, eds P. Liò, O. Miglino, G. Nicosia, S. Nolfi,

and M. Pavone (Cambridge, MA: MIT Press).

Izquierdo, E., and Buhrmann, T. (2008). “Analysis of a dynamical recurrent neural

network evolved for two qualitatively different tasks: walking and chemotaxis,”

in Artificial Life XI: Proceedings of the Eleventh International Conference on

the Simulation and Synthesis of Living Systems, eds S. Bullock, J. Noble, R. A.

Watson, and M. A. Bedau (Cambridge, MA: MIT Press).

Joya, G., Atencia, M. A., and Sandoval, F. (1997). “Hopfield neural network

applied to optimization problems: Some theoretical and simulation results,”

in Biological and Artificial Computation: From Neuroscience to Technology,

eds J. Mira, R. Moreno-Díaz, and J. Cabestany (Berlin; Heidelberg: Springer),

556–565.

Ju-Seog, J., Myung Won, K., and Youngjik, L. (1992). “A conceptual

interpretation of spurious memories in the Hopfield-type neural network,” in

International Joint Conference on Neural Networks (Baltimore, MD: IEEE),

21–26.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science. 220, 671–680.

Koiran, P. (1994). Dynamics of discrete time, continuous state hopfield networks.

Neural Comput. 6, 459–468.

Kryzhanovsky, B., and Kryzhanovsky, V. (2008). ”Binary optimization: on the

probability of a local minimum detection in random search,“ in Artificial

Intelligence and Soft Computing, eds L. Rutkowski, R. Tadeusiewicz, L. A.

Zadeh, and J. M. Zurada (Berlin; Heidelberg: Springer), 89–100.

Liao, X., Wang, L., and Yu, P. (2007). “Stability of neural networks,” in Stability

of Dynamical Systems, eds L. Q. W. Xiaoxin Liao and Y. Pei (Amsterdam:

Elsevier), 487–589.

Little, W. A. (1974). The existence of persistent states in the brain.Math. Biosci. 19,

101–120.

Potvin, J.-Y., and Smith, K. A. (2003). “Artificial neural networks for combinatorial

optimization,” in Handbook of Metaheuristics, eds F. Glover and G. A.

Kochenberger (Boston, MA: Springer), 429–455.

Siri, B., Berry, H., Cessac, B., Delord, B., and Quoy, M. (2008). A

mathematical analysis of the effects of hebbian learning rules on the

dynamics and structure of discrete-time random recurrent neural

networks. Neural. Comput. 20, 2937–2966. doi: 10.1162/neco.2008.05-

07-530

Smith, K. A. (1999). Neural networks for combinatorial optimization: a review of

more than a decade of research. INFORMS J. Comput. 11, 15–34.

Sullivan, G. M., and Feinn, R. (2012). Using effect size—or why the p value is not

enough. J. Grad. Med. Educ. 4, 279–282. doi: 10.4300/JGME-D-12-00156.1

Vico, F. J., and Jerez, J. M. (2003). Stable neural attractors formation:

learning rules and network dynamics. Neural Proces. Lett. 18, 1–16.

doi: 10.1023/A:1026258500432

Vidyasagar, M. (1998). Are analog neural networks better than binary neural

networks? Circuits Syst. Signal Proces. 17, 243–270.

Watson, R. A., Buckley, C. L., and Mills, R. (2009). The Effect of Hebbian Learning

on Optimisation in Hopfield Networks. Technical Report, ECS, University of

Southampton.

Watson, R. A., Buckley, C. L., and Mills, R. (2011b). Optimization in

“self-modeling” complex adaptive systems. Complexity 16, 17–26.

doi: 10.1002/cplx.20346

Watson, R. A., Buckley, C. L., Mills, R., andDavies, A. (2010). ”Associativememory

in gene regulation networks," in Artificial Life XII: Proceedings of the Twelfth

International Conference on the Synthesis and Simulation of Living Systems,

eds H. Fellerman, M. Dörr, M. M. Hanczyc, L. Ladegaard Laursen, S. Maurer,

D. Merkle, P.-A. Monnard, K. Stoy, and S. Rasmussen (Odense : MIT Press),

194–202.

Frontiers in Robotics and AI | www.frontiersin.org 11 August 2018 | Volume 5 | Article 96

https://doi.org/10.1126/science.1133687
https://doi.org/10.3389/fpsyg.2013.00285
https://doi.org/10.1007/s11097-012-9254-2
https://doi.org/10.1371/journal.pcbi.1004644
https://doi.org/10.1177/1059712311403631
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1080/095400904123314786
https://doi.org/10.1162/neco.2008.05-07-530
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.1023/A:1026258500432
https://doi.org/10.1002/cplx.20346
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Zarco and Froese Self-Optimization in CTRNNs

Watson, R. A., Mills R., Buckley C. L. (2011a). Global adaptation

in networks of selfish components: emergent associative memory

at the system scale. Artif. Life. 17, 147–166. doi: 10.1162/artl_a_

00029

Watson, R. A., Mills, R., and Buckley, C. L. (2011c). Transformations

in the scale of behavior and the global optimization of constraints in

adaptive networks. Adapt. Behav. 19, 227–249. doi: 10.1177%2F10597123114

12797

Woodward, A., Froese, T., and Ikegami, T. (2015). Neural coordination

can be enhanced by occasional interruption of normal firing patterns: a

self-optimizing spiking neural network model. Neural. Netw. 62, 39–46.

doi: 10.1016/j.neunet.2014.08.011

Xu, Z.-B., Hu, G.-Q., and Kwong, C.-P. (1996). Asymmetric Hopfield-type

networks: theory and applications. Neural. Netw. 9, 483–501.

Zarco, M., and Froese, T. (2018). Self-modeling in Hopfield neural networks

with continuous activation function. Proc. Comput. Sci. 123, 573–578.

doi: 10.1016/j.procs.2018.01.087

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Zarco and Froese. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 12 August 2018 | Volume 5 | Article 96

https://doi.org/10.1162/artl_a_00029
https://doi.org/10.1177%2F1059712311412797
https://doi.org/10.1016/j.neunet.2014.08.011
https://doi.org/10.1016/j.procs.2018.01.087
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Self-Optimization in Continuous-Time Recurrent Neural Networks
	Introduction
	Hopfield Neural Networks
	A Review of Self-Optimization in Neural Networks
	The Basic Self-Optimization Mechanism
	Variations in Neural Network Topology
	Further Variations and Extensions

	Methods
	Results
	Random Constraints Conditions
	Modular Constraints Conditions

	Discussion
	Future Work
	Author Contributions
	Funding
	References

