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Abstract

The increasing number of metagenomic and genomic sequences has dramatically improved our understanding of microbial
diversity, yet our ability to infer metabolic capabilities in such datasets remains challenging. We describe the Multigenomic
Entropy Based Score pipeline (MEBS), a software platform designed to evaluate, compare, and infer complex metabolic
pathways in large “omic” datasets, including entire biogeochemical cycles. MEBS is open source and available through
https://github.com/eead-csic-compbio/metagenome Pfam score. To demonstrate its use, we modeled the sulfur cycle by
exhaustively curating the molecular and ecological elements involved (compounds, genes, metabolic pathways, and
microbial taxa). This information was reduced to a collection of 112 characteristic Pfam protein domains and a list of
complete-sequenced sulfur genomes. Using the mathematical framework of relative entropy (H′), we quantitatively
measured the enrichment of these domains among sulfur genomes. The entropy of each domain was used both to build up
a final score that indicates whether a (meta)genomic sample contains the metabolic machinery of interest and to propose
marker domains in metagenomic sequences such as DsrC (PF04358). MEBS was benchmarked with a dataset of 2107
non-redundant microbial genomes from RefSeq and 935 metagenomes from MG-RAST. Its performance, reproducibility,
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and robustness were evaluated using several approaches, including random sampling, linear regression models, receiver
operator characteristic plots, and the area under the curve metric (AUC). Our results support the broad applicability of this
algorithm to accurately classify (AUC = 0.985) hard-to-culture genomes (e.g., Candidatus Desulforudis audaxviator), previously
characterized ones, and metagenomic environments such as hydrothermal vents, or deep-sea sediment. Our benchmark
indicates that an entropy-based score can capture the metabolic machinery of interest and can be used to efficiently
classify large genomic and metagenomic datasets, including uncultivated/unexplored taxa.

Keywords: metabolic machinery; metagenomics; omic-datasets; Pfam domains; relative entropy; sulfur cycle; multigenomic
entropy-based score

Background

Over the last 15 years, the enormous advances in high-
throughput sequencing technologies have revolutionized the
field of microbial ecology, dramatically improving our under-
standing of life’s microbial diversity to an unprecedented level
of detail [1–4].

Nowadays, accessing the total repertoire of genomes within
complex communities bymeans ofmetagenomics is becoming a
standard and routine procedure in order to attain the full insight
of the diversity, ecology, evolution, and functionalmakeup of the
microbial world [5]. Furthermore, the accurate reconstruction of
microbial genomes and draft-populations from environmental
metagenomic studies has been shown to be a powerful approach
[6–10], providing clues about the potential metabolic strategies
of hard-to-culture microbial lineages by linking the functional
mechanisms that support specificmetabolismswith taxonomic,
systematic, and ecological contexts of that lineage [8].

Despite the accelerated accumulation of large collections of
metagenomic and genomic sequences, our ability to analyze,
evaluate, and compare complex metabolic capabilities in large-
scale “omic” datasets remains biologically and computation-
ally challenging [11]. Predicting the metabolic potential is a key
step in describing the relationship between a microbial com-
munity and its ecosystem function. This is largely performed
by mapping the protein coding genes of “omic” data onto ref-
erence pathway databases such as MetaCyc [12] or KEGG [13]
based on their homology to previously characterized genes [14].
The currently available methods for metabolic pathway predic-
tion or reconstruction rely on the use of several metrics to infer
the overall repertoire of metabolic pathways present in a given
metagenomic dataset (e.g., MinPath [14], HUMAnN [15], PRMT
[16], MetaPathways [17]).

However, due to the challenges involved in testing mean-
ingful biological hypotheses with complex data, only a small
proportion of the metabolic information derived from these
datasets is eventually used to draw ecologically relevant con-
clusions. In this regard, most of the microbial ecology-derived
“omic” studies have been mainly focused on either: (i) develop-
ing a broad description of the metabolic pathways within a cer-
tain environment [18, 19]; (ii) analyzing the relative abundance
of marker genes involved in several metabolic processes and in
certain ecosystems (e.g., primary productivity, decomposition,
biogeochemical cycling) [20–24]; or (iii) discovering differentially
abundant, shared or unique functional units (genes, proteins,
or metabolic pathways) across several environmental metage-
nomic samples [25–27].

Therefore, in order to integrate all available omics data,
we propose a novel approach to reduce the complexity of tar-
geted metabolic pathways involved in several integral ecosys-
tem processes—such as entire biogeochemical cycles—into a
single informative score, called theMultigenomic Entropy-Based
Score (MEBS). This approach is based on the mathematical ra-

tionalization of Kullback-Leibler divergence, also known as rela-
tive entropy H′ [28]. Relative entropy has been widely applied in
physics, communication theory, and statistical inference, and it
is interpreted as a measure of disorder, information, and uncer-
tainty, respectively [29]. Here we use the communication theory
concept of H′ to summarize the information derived from the
metabolic machinery encoded by the protein coding genes of
“omic” datasets. The application of this metric in biology was
originally developed by Stormo and colleagues, who identified
binding sites that regulate gene transcription [30].

In order to evaluate the performance of our approach, we
selected the sulfur cycle (from now on, S-cycle) because this
is one of the most metabolically and ecologically complex bio-
geochemical cycles, but there are few studies analyzing the
complete repertoire (genes, proteins, or metabolic pathways)
involved in the mobilization of inorganic-organic sulfur com-
pounds through microbial-catalyzed reactions at a planetary
scale [20, 31–35].

MEBS Description

MEBS (MEBS, RRID:SCR 015708) runs in Linux systems [36]. For
practical purposes, the MEBS algorithm was divided into 4
stages, summarized in Fig. 1 and explained below.

Stage 1: manual curation of Sulfur cycle and “omic”
datasets

Sulfur taxonomic representatives
A dataset comprehensively covering the currently known repre-
sentatives of the S-cycle was obtained from primary literature
and the MetaCyc database [12]. Each taxonomic representative
(at the genus or species level) was selected under the criteria
of having evidence suggesting their physiological and biochem-
ical involvement in the degradation, reduction, oxidation, or dis-
proportionation of sulfur compounds. Then, each taxonomic
representative was scanned against our genomic dataset (see
further details below) in order to obtain a list containing the
completely sequenced and non-redundant genomes of the S-
cycle. The resulting Sulfur list (or “Suli”) currently contains 161
curated genomes and was used as the first input of the pipeline.
Both the manually curated taxonomic representatives and Suli
can be found in Table S1.

Random taxonomic representatives (Rlist)
As a negative control, we generated 1000 lists of genomes that
are not particularly enriched on sulfur metabolic preferences.
Each list contains 161 random genomes, the same number of
microorganisms included in Suli. These lists were obtained by
randomly subtracting from the genomic dataset (see below) 161
Refseq accession numbers and their corresponding names.
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An entropy score to evaluate the sulfur metabolism in omic scale 3

Figure 1: Schematic representation of the 4 stages of the MEBS algorithm focusing on the S-cycle. The first step consists of the systematic curation of a database
containing the metabolic information of the S-cycle, which is reduced to a FASTA file of proteins involved (Sucy) and a list of 161 related microorganisms (Suli). A
thousand lists of 161 random-sampled genomes were used as negative control (Rlist). The training dataset comprises 2107 genomes (Gen), which were fragmented
in different sizes by considering the mean size length (MSL) of 935 metagenomes (Met). In the second stage, the domain composition of Sucy proteins is obtained by

scanning Pfam-A, resulting in the Pfam-Sucy database. Then, the relative entropy (H′) of each Sucy-Pfamdomain is obtained in the third stage. Finally, the precomputed
entropies in Gen and GenF are used to evaluate full-length genomic sequences (real) and metagenomic sequences of variable MSL (in this example A, B, and C).

Metabolic pathways and genes
We gathered and classified the metabolic pathways involved in
the S-cycle from the primary literature and 2 experimentally
validated curated databases: KEGG (KEGG, RRID:SCR 012773) [13]
and MetaCyc (MetaCyc, RRID:SCR 007778) [12]. All the molecular
information was then combined into a single database named
Sucy (for sulfur cycle). Sucy currently contains 152 genes and 48
enzyme classification numbers annotated in the Enzyme classi-
fication [37] (Table S2). The 152 FASTA sequences of the proteins
encoded by these genes were downloaded from UniProt [38] and
used as the second input of the pipeline.

Genomic dataset (Gen)
At the time of the analysis (December 21, 2016), a total of 4158
genomes were available from RefSeq database [39]. For com-
parative genomic purposes, we removed redundancy in this

large dataset by using the Web interface [40, 41]. As a phyloge-
nomic distance measure, we used a modified version of the Ge-
nomic Similarity Score (GSSb) [41]; we selected themost tolerant
threshold of 0.95 (so as not to drop many sequenced genomes)
and default parameters, resulting in 2107 clusters containing
similar genomes, ordered by size (largest to smallest). Then, the
largest genome representative for each group was searched in
the NCBI genome assembly summary file [42] and downloaded
from the NCBI FTP site [43].

Metagenomic dataset (Met)
We used the Meta Genome Rapid Annotation using Sub-
system Technology server (MG-RAST, RRID:SCR 004814) [44] to
download metagenomes that: (i) were publicly available; (ii)
contained associated metadata; and (iii) had been isolated
from well-defined environments (i.e., rivers, soil, biofilms),
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discarding host-associated microbiome sequences (i.e., hu-
man, cow, chicken). In addition, we included 35 unpublished
metagenomes derived from sediment, water, and microbial
mats from Cuatro Ciénegas, Coahuila (CCC), Mexico. The latter
were also submitted and annotated in the MG-RAST server and
will be described in depth elsewhere. The resulting collection
of 935 FASTA files (≈500 GB), containing gene-called protein se-
quences (MG-RAST stage 350), were downloaded from the REST-
ful MG-RAST API [45].While thesemetagenomeswere evaluated
and scored in STAGE 4, they were also analyzed to estimate their
mean sequence length, considering that the fragmented nature
of metagenomic sequences would have an impact on homology
detection, depending on the length of the reads [46, 47]. There-
fore, we measured the mean size length (MSL) of the peptide se-
quences of the 935metagenomes inMet and the 152 curated pro-
teins in Sucy, which are summarized in Fig. S1. It was observed
that the MSL of Met varies broadly, with a majority of metage-
nomic peptides with MSL ≤ 30 aa, and that Sucy proteins range
from 49 to 1020 aa, withMSL = 349 aa. According to this distribu-
tion, the metagenomes in Met were grouped into 7 well-defined
categories: MSL ≤30, ≤60, ≤100, ≤150, ≤200, ≤250, ≤300 aa.

Fragmented genomic dataset (GenF)
In order to simulate the observed variability of MSL across
metagenomes, protein sequences encoded in the genomic
dataset (Gen, containing 2107 genomes) were in silico sheared
with Perl script get protein fragments.pl into the 7 MSL categories
defined above (30 to 300). This produced the GenF dataset, which
currently requires up to 104 GB of disk space.

Stage 2: domain composition of the input proteins

The annotation of protein domains in Sucy was conducted
using Interproscan 5.21–60.0 [48] against databases Pfam-A
v30 (Pfam, RRID:SCR 004726) [49], TIGRFAM v13 (JCVI TIGR-
FAMS, RRID:SCR 005493) [50], and Superfamily v1.75 (SUPER-
FAMILY, RRID:SCR 007952) [51]. Then, the Hidden Markov Mod-
els (HMMs) from matched Pfam domains (n = 112) were ex-
tracted from Pfam-A using script extract hmms.pl. These selected
HMMs were subsequently scanned against the Genomic, Ge-
nomic Fragmented, and Metagenomic datasets (from now on,
“omic” datasets, see subsequent stages) using HMMER 3.0, the
hmmsearch –cut ga option [52].

Stage 3: relative entropy and its use in detecting
informative domains

In order to detect protein domains enriched among sulfur-based
microorganisms (Suli), we used a derivative of the Kullback-
Leibler divergence [28]—also known as relative entropy H′(i)—to
measure the difference between probabilities P and Q (see Equa-
tion (1) below). In this context, P(i) represents the frequency of
protein domain i in the 161 Suli genomes (observed frequency),
while Q(i) represents its frequency in the 2107 genomes in Gen
(expected frequency). The script to compute the entropy (en-
tropy.pl) requires the list of the genomes of interest (Suli) and
the tabular output file obtained from the scanning of Gen and
GenF against the Pfam-Sucy database. The obtained values of H′

(in bits) capture to what extent a given Pfam domain informs
about the metabolism of interest. In this case, domains with
H′ values close to or greater than 1 correspond to the most in-
formative Pfam domains (enriched among S-based genomes),

whereas low H′ values (close to 0) indicate non-informative
ones. Negative values correspond to those observed less than
expected.

H ′ = P (i ) log2
P (i )
Q (i )

(1)

As a negative control, the H′ of the 112 Pfam domains were re-
calculated in both the Gen and GenF datasets, but replacing Suli
with 1000 equally sized lists of random-sampled genomes (Rlist).

We evaluated the impact of the MSL in the computed
entropy values using Gen and GenF. First, we focused on
detecting informative Pfam domains that could be used as
possible molecular marker genes in variable-length metage-
nomic sequences. Specifically, we looked for domains display-
ing stable H′ values across both Gen and GenF by using the
script plot cluster comparison.py, which implements the follow-
ing methods: K-Means, Affinity propagation, Mean-shift Spec-
tral, Ward hierarchical, Agglomerative, DBSCAN, and Birch. All
of these are part of the scikit-learn Machine Learning Python
module [53].

Stage 4: final score, interpretation, properties, and
benchmark

Peptide sequences from a given genome or metagenome of in-
terest are evaluated by first scanning their Pfam domains and
then producing a final score, defined as the sum of the precom-
puted entropies of matched S-related Pfam domains (see Equa-
tion (2)). This score (Sulfur Score [SS] in our case) summarizes
the information content of the metabolic machinery of inter-
est. In this context, informative sulfur protein domains would
contribute to higher SS, whereas non-informative ones would
decrease it. This is an extension of procedures originally devel-
oped for the alignment of DNA and protein motifs, in which
individual positions are independent and additive and can be
simply summed up to obtain the total weight or information
content [30]. Instead of aligning sequences, in our context we
added up the entropy values of the Pfam domains matched in a
given “omic” sample (resulting from scanning the sample of in-
terest against Pfam-Sucy), fromwhich a total weight (SS) is com-
puted by using script pfam score.pl.

SS =
112∑

i=1

H ′ (2)

Datasets in which the majority of informative S-cycle protein
domains are represented will yield a high SS; in contrast, low SS
values should be expected if proteins involved in the S-cycle are
not particularly enriched.

MSL
As the calculation of the SS depends on the MSL of the omic
sample of interest, script pfam score.pl supports option –size in
amino acid residues (aa). In this way, appropriate precomputed
H′ values for Pfam domains can be selected to produce the final
score. Currently 30, 60, 100, 150, 200, 250, 300, and real sizes are
supported.

Metabolic pathway completeness and KEGG visualization
The presence-absence patterns of Pfam domains belong-
ing to particular pathways can be exploited to compute
metabolic completeness. This optional task is invoked with
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parameter –keggmap and a TAB-separated file mapping Pfam
identifiers to KEGG Orthology entries (KO numbers) and the cor-
responding pathway in Sucy (see Table S3). To compute com-
pleteness, the total number of domains involved in a given path-
way (i.e., sulfate reduction, sulfide oxidation) must be retrieved
from the Sucy database (See Table S2). Then, the protein do-
mains currently present in any given sample are divided by the
total number of domains in the pre-defined pathway. The script
produces: (i) a detailed report of the metabolic pathways of in-
terest and (ii) a list of KO numbers with Hex color codes, corre-
sponding to KO matches in the omic sample, which can be ex-
ported to the KEGGMapper–Search&Color Pathway tool (see Fig.
S2) [54].

Properties and performance of SS
Since the outcome of the final score (SS) largely depends on the
list of microorganisms involved in the metabolism of interest
(in our case, Suli) and the Pfam domains found in the input pro-
tein sequences (n = 112), we evaluated its robustness and repro-
ducibility with several approaches. First, we compared our re-
sults with a benchmark performed 3 years ago in which we used
Pfam-A v27 (instead of version 30), a genomic dataset contain-
ing 1528 non-redundant genomes (579 fewer genomes than our
current Genomic dataset), and an input list of 156 genomes of in-
terest (5 fewer that our current Suli). Second, SS estimates were
compared with scores obtained by randomly selecting ≈50% of
the 112 Pfam domains with both Gen and Met. This analysis
was performed a thousand times with pfam score.pl –random.
Third, we benchmarked the predictive capacity of the SS in or-
der to accurately classify genomes of S-related organisms (Suli,
n = 161, positive instances), in contrast with a larger set of non-
redundant genomes (Gen–Suli, n = 1.946, negative instances).
Therefore, we computed the true positive rates (TPR), false posi-
tive rates (FPR), receiver operating characteristic (ROC) plots, and
the resulting area under the curve (AUC) using the scikit-learn
module [53].

Results and Discussion

WepresentMEBS, a newopen source software to evaluate, quan-
tify, compare, and predict the metabolic machinery of inter-
est in large “omic” datasets. The pipeline includes 4 stages.
The first one consists of the systematic and targeted acquisi-
tion of the molecular and ecological information describing the
metabolism of interest, represented by a list of curated microor-
ganisms and a FASTA file of proteins involved in that metabolic
network. In the second stage, the domain composition of the cu-
rated proteins is evaluated. Then, the domains enriched among
themicroorganisms of interest are identified by using themath-
ematical framework of the relative entropy (H’, third stage). Fi-
nally, the summation of the entropy of individual Pfam domains
in a given genome or metagenomic dataset yields the final score
(see Fig. 1).

To test the applicability of this approach, we evaluated the
metabolic machinery of the S-cycle. Due to its multiple redox
states and its consequences onmicrobiological and geochemical
transformations, S-metabolism can be observed as a complex
metabolic machinery, involving a myriad of genes, enzymes, or-
ganic substrates, and electron carriers, which largely depend
on the surrounding geochemical and ecological conditions. For
these reasons, the complete repertory involved in the metabolic
machinery of the S-cycle has remained underexplored despite
themassive data produced in “omic” experiments. Here, we per-
formed an integral curation effort to describe all the elements

involved in the S-cycle and then used, as explained in the
following sections, to score genomic and metagenomic datasets
in terms of their sulfur relevance.

Manual curation: the complex metabolic machinery of
the sulfur cycle

In order to integrate the complete biogeochemical S-cycle, we
manually curated and modeled the major processes involved
in the mobilization and use of S-compounds through Earth’s
biosphere. This effort resulted in 2 comprehensive databases.
The first one includes most of the known microorganisms (with
and without complete genomes) described in the literature to be
closely involved in the S-cycle (Table S1). In this database, we in-
cluded representative taxa from the following metabolic sulfur
guilds: (i) chemolithotrophic, colorless sulfur bacteria (CLSB: 24
genera); (ii) anaerobic phototrophs, purple sulfur bacteria (PSB:
25 genera), and green sulfur bacteria (GSB: 9 genera); (iii) sulfate-
reducing bacteria (SRB: 40 genera); and (iv) deep-branch sulfur
hyperthermophilic microorganisms, such as elemental sulfur–
reducing (SRM: 19 genera) and oxidizers (SO: 4 genera). From all
the microorganisms described to be involved in the S-cycle, at
the time of the analysis, a total of 161 were found to be com-
pletely sequenced and non-redundant genomes, and thesewere
used as the first input of the pipeline (Suli).

The second database (Sucy) contains genes, proteins, and
pathways with experimental evidence linking them to the
S-cycle. To compile this database, we first gathered themost im-
portant S-compounds derived from biogeochemical processes
and biological catalyzed reactions. Then we classified each
S-compound according to its chemical and thermodynamic
nature (Gibbs free energy of formation). Finally, we classified
whether each compound can be used as a source of carbon, ni-
trogen, energy, or as an electron donor, fermentative substrate,
or terminal electron acceptor in respiratorymicrobial processes.
The schematic representation of the manually curated effort
summarizing the complexity of the sulfur biogeochemical cycle
in a global scale is shown in Fig. 2.

Once we selected the microorganisms, genes, and biogeo-
chemical processes involved, we systematically divided the
metabolic machinery of the S-cycle into 28 major metabolic
pathways described in Table 1. In general terms, we included
pathways involved in: (i) the oxidation/reduction of inorganic
S-compounds, used as source of energy, electron donor or accep-
tor (P1-P7, P11 and P20 and P21); (ii) the degradation of organic
S-compounds, such as aliphatic sulfonates, sulfur amino acids,
and organosulfonates (P8-P10, P12-P19, P22, P23, P27); (iii) the
methanogenesis from methylated thiols, such as dimethyl sul-
fide DMS (P24), metylthio-propanoate (P25), and methanethiol
(P26), which are generated in nature by different biogeochemi-
cal processes [12]; and finally, (iv) the biosynthesis of sulfolipids
(SQDG) (P28), because it has been observed that some bacte-
ria living in S-rich and P-lacking environments are able to syn-
thetize sulfolipids, instead of phospholipids, in the membrane
as an adaptation to the selective pressures of these particular
environments [55]. The synthetic pathway P29 is explained in
further detail in the next sections (Table 1).

After the comprehensive metabolic inventory was compiled,
we linked all the elements in a single network representation
of the S-metabolic machinery (Fig. 3). To the best of our knowl-
edge, this is the first molecular reconstruction of the cycle that
considers all the sulfur compounds, genes, proteins, and the
corresponding enzymatic steps resulting in higher-order molec-
ular pathways. The latter representation also highlights the
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Figure 2: Sulfur cycle at a global scale. The most important organic and inorganic S-compounds derived from biogeochemical processes are arranged
according to the Standard Gibbs free energy of formation described in Caspi et al. [12]. The left column indicates whether specific microorganisms
are able to use those S-compounds as a source of carbon (C), nitrogen (N), energy (E), or electron donors (◦). Double asterisks indicate whether the
S-compound is used as sole source of C, N, or E. The corresponding electron acceptors in redox-coupled reactions using the S-compound as electron donor are not

shown. The right column indicates whether the S-compound is used as fermentative substrate (F) or terminal electron acceptor in respiratory processes (R). Colored
boxes summarize the metabolic guilds involved in the metabolism of S-compounds in oxidation (i.e., CLSB, SOM, PSB, and GSB) or reduction (SR, SRB) processes. The
complete list of S-based microorganisms (Suli) is found in Table S1. Figure based on annotations from MetaCyc [12].
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Table 1: Metabolic pathways of global biogeochemical S-cycle

Pathway
number Metabolisma

Chemical
processb Sulfur compound Typec

Chemical
formula Sourced

Number of
Pfam domainse

P1 DS O Sulfite I SO3
2− E 9

P2 DS O Thiosulfate I S2O3
2- E 10

P3 DS O Tetrathionate I S4O6
2- E 2

P4 DS R Tetrathionate I S4O6
2- E 17

P5 DS R Sulfate I SO4
2− E 20

P6 DS R Elemental sulfur I So E 20
P7 DS D Thiosulfate I S2O3

2- E 9
P8 DS O Carbon disulfide O CS2 E 1
P9 A DE Alkanesulfonate O CH3O3SR S 5
P10 A R Sulfate I SO4

2- S 20
P11 DS O Sulfide I H2S E/S 29
P12 A DE L-cysteate O C3H6NO5S C/E 1
P13 A DE Dimethyl sulfone O C2H6O2S C/E 3
P14 A DE Sulfoacetate O C2H2O5S C/E 2
P15 A DE Sulfolactate O C3H4O6S C/S 14
P16 A DE Dimethyl sulfide O C2H6S C/S 16
P17 A DE Dimethylsulfoniopropionate O C5H10O2S C/S/E 12
P18 A DE Methylthiopropanoate O C4H7O2S C/S 7
P19 A DE Sulfoacetaldehyde O C2H3O4S C/S 7
P20 DS O Elemental sulfur I S◦ C/S/E 7
P21 DS D Elemental sulfur I S◦ C/S/E 1
P22 A DE Methanesulfonate O CH3O3S C/S/E 7
P23 A DE Taurine O C2H7NO3S C/S/E 11
P24 DS M Dimethyl sulfide O C2H6S C 1
P25 DS M Metylthio-propanoate O C4H7O2S C 1
P26 DS M Methanethiol O CH4S C 1
P27 A DE Homotaurine O C3H9NO3S N 1
P28 A B Sulfolipid O SQDG 4
P29 Markers Markers 12

aMetabolism: assimilative (A) inorganic compounds are reduced during biosynthesis; dissimilative (DS) inorganic compounds used as electron acceptors in energy

metabolism. A large amount of electron acceptors is reduced, and the reduced product is secreted.
bChemical process: oxidation (O): reduction (R), degradation (DE), biosynthesis (B), methanogenesis (M), disproportionation (D).
cCompound type: organic (O): sulfur atoms with covalent bonds to carbon atoms. Inorganic (I): sulfur compounds with non-carbon atoms.
dSource: sulfur compound used as source of energy (E), sulfur (S), carbon (C), nitrogen (N).
eNumber of Pfam domains belonging to each metabolic pathway described in Sucy (Table S2).

interconnection of pathways in terms of energy flow and the in-
terplay of the redox gradient (organic/inorganic) of the interme-
diate compounds that act as key axes of organic and inorganic
reactions (e.g., sulfite).

Annotation of Pfam domains within sulfur proteins

Our approach requires the detection of structural and evolution-
ary units, also known as domains, in the curated list of protein
sequences involved in themetabolism of interest (S-cycle in this
case). The annotation of protein domains against the Pfam-A
database resulted in a total of 112 domains identified in 147 pro-
teins (out of 152). These 112 domains constitute the Pfam-Sucy
database and represent all the pathways listed in Table 1. Two
other protein family databases were tested (TGRFAM and Super-
family), but the number of proteins with positive matches was
lower than with Pfam (57 and 137, respectively), and thus the
other protein family databases were not further considered.

Preparation of omic datasets: Gen, GenF, and Met

The genomic dataset required for computing domain entropies
(Gen) was obtained from public databases, as explained above in
“MEBS Description.” A fragmented version of Gen, called GenF,

was generated by considering the MSL distribution of metage-
nomic sequences (Fig. S1).

In order to benchmark MEBS with real environmental
metagenomic samples, a collection of 900 public metagenomes
was obtained from MG-RAST, to which we added 35
metagenomes sampled from an ultra-oligotrophic shallow
lake in México (CCC). Altogether, these 935 metagenomes set
up the Met dataset.

Using the relative entropy to recognize S-cycle domains
and candidate markers

The next stage consists of the quantitative detection of informa-
tive domains (enriched among organisms in Suli) by computing
their relative entropy (H′) using Equation (1). The occurrences of
each of the 112 Pfam domains in Suli and the genomic datasets
were taken as observed and expected frequencies, respectively.
Fig. 4A summarizes the computed H′ values in real (Gen) and
fragmented genomic sequences of increasing size (GenF). The
results indicate that only a few Pfam domains are equally infor-
mative, regardless of the length of sequences. When H′ values
inferred from real, full-length proteins are compared to those
of fragmented sequences, it can be seen that shorter sequences
(MSL 30 and 60 aa) yield larger entropy differences than se-
quences of length >100 aa (see in Fig. 4B). Therefore, in order
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8 De Anda et al.

Figure 3:Comprehensive network representation of themachinery of the biogeochemical S-cycle in a single cell. The 28molecular pathways involved in themetabolism
of sulfur compounds described in Table 1 are included. The enzymatic steps are depicted as rectangles, followed by arrows indicating the direction of the reaction. Green

hexagons represent metabolic links to other metabolisms. Bold dashed arrows indicate bidirectional reactions. Inorganic S-compounds have been arranged according
to their reduction potential, from the most oxidized (yellow) to the most reduced (red) compounds. Gray rectangles indicate enzymes acting in disproportionation
processes in which a reactant is both oxidized and reduced in the same chemical reaction, forming 2 separate compounds. Input biogeochemical S-compounds

are shown outside and connected with bold arrows. Dashed arrows indicate S-compounds excreted out of the cell. The upper half of the modeled cell depicts the
processes involved in the use of organic S-compounds (orange circles) found in natural environments and used as source of carbon, sulfur, and/or energy in several
aerobic/anaerobic strains, described in Fig. 2.

to shortlist candidate marker genes, we selected those Pfam
domains displaying constant, high mean H′ values in Gen and
GenF, lowH′ standard deviation (std), and a clear separation from
the random distribution.

We tested several clustering methods, summarized in Fig.
S3, with Ward and Birch performing best in grouping together
informative protein domains with low std. However, the Ward
classification was eventually selected as Birch failed to include
a few Pfam domains relevant in the S-cycle (see Fig. S4). By
using the Ward method, 3 well-defined clusters of Pfam do-
mains were generated, as observed in Fig. 4C. Cluster 0 included
94 domains containing H′ values ranging from –0.4 to 0.4 and
overlapping with the values obtained in the negative control ex-
plained in the next section. Cluster 1 consistently grouped to-
gether 12 Pfam domains, listed in Table 2, with high entropy and
low std, and can therefore be proposed as molecular markers
in metagenomic sequences of variable length. Among the pro-
posed marker domains are APS-Reductase (PF12139: H′ = 1.2),
ATP-sulfurilase (PF01747: H′ = 1.03), and DsrC (PF04358: H′ =
0.52), key protein families in metabolic pathways involved in
both sulfur oxidation/reduction processes. Finally, cluster 2 in-
cludes Pfam domains displaying high entropy values and high
std, such as the PUA-like domain (PF14306: H′ = 1). We pre-
sume that domains within this cluster are also key players in
S-metabolism; however, their high std makes them unsuitable
for markers, particularly with metagenomic sequences of vari-
able MSL. We suggest that further analyses will be required
to test the implication in S-energy conservation processes of

proteins containing domains such as PF03916, PF02665, or
PF14697 (see the complete list in Table S4).

Is the entropy affected by the input list of
microorganisms? Negative control test

In order to evaluate to what extent the H′ values depend on the
curated list of microorganisms, we performed a negative control
by replacing Suli in 1000 lists of randomly sampled genomes,
and we used them to compute the observed frequencies (see
Equation (1)). As expected, there was a clear difference between
both H′ estimates (see Fig. S5). In particular, entropy values de-
rived from the random test were found to be approximately
symmetric and consistently low among the GenF size categories
(compared with the real values), yielding values of –0.09 and 0.1
as 5th and 95th percentiles, respectively (Table S5).

Sulfur Score and its predictive capacity to detect
S-microbial players in a large genomic dataset

To test whether Pfam entropies can be combined to capture the
S-metabolic machinery in “omic” samples, we calculated the fi-
nal MEBS score, called, in this case, Sulfur Score. We computed
the SS on each of the 2107 non-redundant genomes in Gen with
the script score genomes.sh. The individual genomes, along with
their corresponding SS values and taxonomy according to NCBI,
are found in Table S6.
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An entropy score to evaluate the sulfur metabolism in omic scale 9

Figure 4: Entropy values of Sulfur-derived protein domains. (A) Heatmap showing the entropy values (H′) of the 112 Pfam domains identified in proteins curated in
SuCy. (B) Difference between entropies estimated from sizes categories of growing peptide size (GenF) and the real values measured within complete genomes (Gen).

Error bars show standard deviations. Both graphs were obtained with script plot entropy.py. Clustering of the Pfam relative entropies obtained in Gen and GenF was
produced with the Ward method. Log frequency of the entropy values computed in the random test is colored in purple (see scale bar). Cluster 0 (blue) groups protein
domains with low relative entropy that overlap with the random distribution. Cluster 1 (green) includes the Pfam domains that fulfill the requirements to be used as
molecular markers (high H′ and low standard deviation [std]). Red dots (cluster 2) correspond to Pfam domains with high H′ and std. The cluster was produced with

script F meanVSstd.py.

For evaluation purposes, we classified and manually anno-
tated all the genomes in Gen according to their metabolic capa-
bilities. First, we identified the 161 curated genomes belonging
to Suli. Then, we focused on the remaining genomes. A set of 192
genomeswith SS> 4were labeled Sulfur unconsidered or related
microorganisms (Sur). Finally, the rest of genomes in Gen were
classified as NS (Non-Sulfur = Gen–(Suli + Sur)), including 1754
genomes. The boxplots in Fig. 5A summarize the scores obtained
in these 3 subsets.

To double-check whether the Sur genomes—selected due to
their SS—might be involved in the S-cycle, we manually anno-
tated all of them, focusing on relevant genomic, biochemical,
physiological, and environmental information that we might
have missed since Suli was first curated (Table S7). Out of 192
genomes, 68 are reported to metabolize S-compounds under
culture conditions in the literature. For instance, Sideroxydans
lithotrophicus ES-1, amicroaerophilic Fe-oxidizing bacterium, has
been observed to also grow in thiosulfate as an energy source
[56]. Another 59 Sur organisms have been isolated from Sulfur-
rich environments, such as hot springs or solfataric muds. Re-
markably, some of this species include hard-to culture genomes
reconstructed from metagenomic sequences such as Candida-
tus Desulforudis audaxviator MP104C isolated from basalt-hosted
fluids of the deep subsea floor [6], an unnamed endosymbiont

of a scaly snail from a black smoker chimney [57], and ar-
chaeon Geoglobus ahangari, sampled from a 2000-meter-deep hy-
drothermal vent [58]. Furthermore, we also confirmed within
Sur the implication of S-cycle of 20 species of the genus Campy-
lobacter. These results are consistent with the ecological role of
the involved taxa, that along with SRB and methanogens in-
habiting host-gastrointestinal and low-oxygen environments,
where several inorganic (e.g., sulfates, sulfites) or organic (e.g.,
dietary amino acids and host mucins) are highly metabolized
by these metabolic guilds [59]. The implication of Campylobac-
ter species in the S-cycle is also supported by the fact that
some of them have been isolated from deep sea hydrothermal
vents [60]. The remaining species in Sur were classified into dif-
ferent categories, including bioremediation (7), Fe-environment
(2), marine (2), peat lands (2) and other environments (32)
(see Fig. 5B).

When the SS values of genomes in Sur are compared to the
S-metabolic guilds represented in Suli (e.g., PSB, SRB, GSB), it can
be seen that they are indeed similar and clearly separated from
the rest of the NS genomes (Fig. 5C). This strongly suggests that
high-scoring genomes are indeed ecologically andmetabolically
implicated in the S-cycle.

Finally, in order to quantify the capacity of the SS to accu-
rately classify S-related microorganisms, we computed a ROC
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10 De Anda et al.

Table 2: Informative Pfam domains with high H′ and low std; novel proposed molecular marker domains in metagenomic data of variable MSL

Pfam ID
(Suli ocurrences) H′ mean H′ std Description

PF12139 58/161 1.2 0.01 Adenosine-5′-phosphosulfate reductase beta subunit: key protein domain for both
sulfur oxidation/reduction metabolic pathways. Has been widely studied in the
dissimilatory sulfate reduction metabolism. In all recognized sulfate-reducing
prokaryotes, the dissimilatory process is mediated by 3 key enzymes: Sat, Apr, and Dsr.
Homologous proteins are also present in the anoxygenic photolithotrophic and
chemolithotrophic sulfur-oxidizing bacteria (CLSB, PSB, GSB), in different cluster
organizations [35].

PF00374 135/161 1.1 0.09 Nickel-dependent hydrogenase: hydrogenases with S-cluster and selenium containing
Cys-x-x-Cys motifs involved in the binding of nickel. Among the homologues of this
hydrogenase domain is the alpha subunit of the sulfhydrogenase I complex of
Pyrococcus furiosus that catalyzes the reduction of polysulfide to hydrogen sulfide with
NADPH as the electron donor [69].

PF01747 103/161 1.03 0.06 ATP-sulfurylase: key protein domain for both sulfur oxidation and reduction processes.
The enzyme catalyzes the transfer of the adenylyl group from ATP to inorganic sulfate,
producing adenosine 5′-phosphosulfate (APS) and pyrophosphate, or the reverse
reaction [70].

PF02662 62/161 0.82 0.03 Methyl-viologen-reducing hydrogenase, delta subunit: is 1 of the enzymes involved in
methanogenesis and encoded in the mth-flp-mvh-mrt cluster of methane genes in
Methanothermobacter thermautotrophicus. No specific functions have been assigned to the
delta subunit [49].

PF10418 122/161 0.78 0.06 Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B: among the
homologous genes in this family are asrA and asrB from Salmonella enterica enterica
serovar Typhimurium, which encode (1) a dissimilatory sulfite reductase, (2) a gamma
subunit of the sulfhydrogenase I complex of Pyrococcus furiosus, and (3) a gamma
subunit of the sulfhydrogenase II complex of the same organism [12].

PF13247 149/161 0.66 0.06 4Fe-4S dicluster domain: Homologues of this family include: (1) DsrO, a ferredoxin-like
protein, related to the electron transfer subunits of respiratory enzymes, (2)
dimethylsulfide dehydrogenase β subunit (ddhB), involved in dimethyl sulfide
degradation in Rhodovulum sulfidophilum, and (3) sulfur reductase FeS subunit (sreB) of
Acidianus ambivalens, involved in sulfur reduction using H2 or organic substrates as
electron donors [12].

PF04358 73/161 0.52 0 DsrC like protein: DsrC is present in all organisms encoding a dsrAB sulfite reductase
(sulfate/sulfite reducers or sulfur oxidizers). The physiological studies suggest that
sulfate reduction rates are determined by cellular levels of this protein. The
dissimilatory sulfate reduction couples the 4-electron reduction of the DsrC trisulfide
to energy conservation [71]. DsrC was initially described as a subunit of DsrAB, forming
a tight complex; however, it is not a subunit, but rather a protein with which DsrAB
interacts. DsrC is involved in sulfur-transfer reactions; there is a disulfide bond
between the 2 DsrC cysteines as a redox-active center in the sulfite reduction pathway.
Moreover, DsrC is among the most highly expressed sulfur energy metabolism genes in
isolated organisms and meta-transcriptomes [71].

PF01058 158/161 0.45 0.01 NADH ubiquinone oxidoreductase, 20 Kd subunit: homologous genes are found in the
delta subunits of both sulfhydrogenase complexes of Pyrococcus furiosus [12].

PF01568 156/161 0.4 0.05 Molydopterin dinucleotide binding domain: this domain corresponds to the C-terminal
domain IV in dimethyl sulfoxide (DMSO) reductase [49].

PF09242 39/161 0.38 0.04 Flavocytochrome c sulphide dehydrogenase, flavin-binding: enzymes found in
S-oxidizing bacteria such as the purple phototrophic bacteria Chromatium vinosum [49].

PF04879 151/161 0.37 0.05 Molybdopterin oxidoreductase Fe4S4 domain: is found in a number of
reductase/dehydrogenase families, which include the periplasmic nitrate reductase
precursor and the formate dehydrogenase alpha chain, i.e., Wolinella succinogenes
polysulfide reductase chain, Salmonella typhimurium thiosulfate reductase (gene phsA).

PF08770 45/161 0.35 0.03 Sulphur oxidation protein SoxZ: SoxZ sulfur compound chelating protein, part of the
complex known as the Sox enzyme system (for sulfur oxidation) that is able to oxidize
thiosulfate to sulfate with no intermediates in Paracoccus parantropus [12].

curve (for a detailed description of ROC curves, see [61]). We thus
defined genomes annotated in Suli as positive instances, and
the rest as negative ones. The results are shown in Fig. 5D, with
an estimated area under the curve (AUC) of 0.985, and the cor-
responding cut-off values of SS for several false positive rates
(FPR). According to this test, an SS value of 8.705 is required to

rule out all false positives in Gen, while SS = 5.231 is sufficient
to achieve an FPR < 0.05.

Overall, these results indicate that MEBS is a powerful and
broadly applicable approach to predict and classify microorgan-
isms closely involved in the sulfur cycle, even in hard-to-culture
microbial lineages.
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An entropy score to evaluate the sulfur metabolism in omic scale 11

Figure 5: Distribution of Sulfur Score (SS) in 2107 non-redundant genomes (Gen). (A) Subsets of genomes annotated in Suli (n = 161). (ii) Sur, genomes not listed in Suli
with SS > 4 and candidates to be S-related microorganisms (n = 192). (iii) Rest of the genomes in Gen (NS, n = 1754). According to the curated species, true positives
can be defined as genomes with SS > max (SSNS) distribution, whereas true negatives are those with SS < min (SSSuli). (B) Assignment of the 192 genomes in Sur to
ecological categories based on literature reports. (C) Distribution of SS for different S-metabolic guilds, and the genomes in Sur. (D) ROC curve with area under the

curve (AUC) indicated together, with thresholds for some false positive rates (FPR).

Sulfur Score and its predictive capacity to detect
S-related environments in a large metagenomic
collection

The SS was also computed for each metagenome in Met, us-
ing their correspondingMSL to choose the appropriate entropies
previously calculated in dataset GenF (Table S8). In order to test
whether SS values can be used to identify S-related environ-
ments, we performed the following analyses. First, we used the
geographical metadata associated with each metagenome to
map the global distribution of SS. In Fig. 6A, SS values are col-
ored from yellow to red. The most informative S-environments
(displaying SS values equal to or greater than the 95th percentile
of each MSL category) are shown in blue.

Then, we sorted the metagenomes according to their en-
vironmental features, as proposed by the Genomic Standards
Consortium (GSC) and implemented in MG-RAST. Each feature
corresponds to 1 of 13 environmental packages (EPs) that stan-
dardize metadata describing particular habitats that are ap-
plicable across all GSC checklists and beyond [62]. Therefore,
each EP represents a broad and general classification contain-
ing particular features. For example, the “water” EP includes
330 metagenomes from our dataset, belonging to several fea-
tures such as freshwater, lakes, estuarine, marine, hydrother-
mal vents, etc. As each of these features has different eco-
logical capabilities in terms of biogeochemical cycles, we can
expect different behaviors among SS values, as shown in Fig.
6B. In general, all the metagenomes derived from hydrother-
mal vents (2), marine benthic (6), intertidal (8), and our unpub-
lished CCC microbial mats had SS values above the 95th per-
centile, highlighting the importance of the S-cycle in these envi-

ronments. In contrast, the metagenomes belonging to features
such as sub-terrestrial habitat (7), saline evaporation pond (24),
or organisms-associated habitat (7) displayed consistently low
or even negative SS values, indicating a negligible presence of S-
metabolic pathways in those environments. The remaining fea-
tures have intermediatemedian SS values and contain occasion-
ally individual metagenomes with SS values above the 95th per-
centile, such as freshwater, marine, ocean, or biofilm environ-
ments.

To validate the list of 50 high-scoring metagenomes (above
the 95th percentile), we double-checked their annotations. Ac-
cording to the literature and associated metadata, all these en-
vironments are closely involved in the mineralization, uptake,
and recycling processes of S-compounds, e.g., environmental
sequences derived from the coastal Oligochaete worm Olavius
algarvensis, hydrothermal vents, and marine deep-sea surface
sediments around the Deep-Water Horizon spill in the Gulf of
Mexico. The complete list of annotated metagenomes, along
with their ecological capabilities, is found in Table S9.

Evaluating the robustness of the sulfur score

To test the reproducibility and robustness of theMEBS final score
(SS), we conducted 2 further analyses. In the first, we compared
SS estimates derived from the Met dataset, computed with Pfam
entropies obtained in the first MEBS benchmark performed 3
years ago (2014) with the current data described in this article
(2017). Despite the changes of both databases (Pfam database
version and the Suli list), we found a strong correlation (r2 =
0.912) between the SS outcomes (Fig. S6A). A kernel density anal-
ysis of the latter comparison suggests a different behavior of low
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12 De Anda et al.

Figure 6: Distribution of Sulfur Score (SS) in the metagenomic dataset Met. (A) Geo-localized metagenomes sampled around the globe are colored according to their

SS values. The following cut-off values correspond to the 95th percentiles of 7 mean size length classes (30, 60, 100, 150, 200, 250, and 300 aa): 7.66, 9.70, 8.81, 8.51,
8.18, 8.98, and 7.61, respectively. Circles with a thick blue border indicate metagenomes with SS ≥ the 95th percentile. (B) Distribution of SS values observed in 935
metagenomes classified in terms of features (x-axis) and colored according to their particular habitats. Features are sorted according to their median SS values. ccc:

metagenomes from Cuatro Cienegas, Coahuila, Mexico. Green lines indicate the lowest and largest 95th percentiles observed across MSL classes.

and high SS scores, with the latter being more reproducible (see
Fig. S6B).

In the second analysis, we quantitatively tested to what ex-
tent the entropy estimates of the 112 Pfam domains directly af-
fect the outcome of the SS in Gen and Met. We randomly sub-
sampled ≈50% of those domains to compute the SS a thousand
times for each genome and metagenome in Gen and Met, re-
spectively. The results, summarized in Table S10, confirm that
SS values computed with random subsets of Pfam domains are
generally lower than SS derived from the full list (n = 112) of
Sucy-Pfamdomains. To further inspect the distribution of SS val-
ues produced with random subsets of domains (random SS), we

focused on the particular case of the metagenomes belonging
to the category MSL = 60. As expected, the distribution of ran-
dom SS oscillates between negative and positive values. Inter-
estingly, metagenomes exhibiting only positive random SS are
ranked above the 95th percentile according to their real SS val-
ues (see Fig. S7A). The latter indicates that even a random sub-
set of Pfam domains used to compute the score is more likely
to highly rank metagenomes containing the sulfur metabolic
machinery (large number of high-entropy Pfam domains), than
those lacking the sulfur metabolism or displaying a large num-
ber of non-informative Pfam domains. Furthermore, by compar-
ing the median of random SS with the real scores, we observe
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An entropy score to evaluate the sulfur metabolism in omic scale 13

Figure 7:Metabolic completeness of themetabolic pathways described in Table 1. (A) Boxplot distribution of the pathway completeness in genomic and (B)metagenomic
datasets. (C) Linear regressionmodels of the Sulfur Score (SS) and themean completeness in Gen and (D)Met dataset. (E)Heatmap showing themetabolic completeness
of the following genomes: Desulfovibrio vulgaris DP4 (SS = 11.442), Ammonifex degensii KC4 (SS = 12.508); Pelodictyon phaeoclathratiforme BU-1 (SS = 11.836); Thiobacillus
denitrificans ATCC 25 259 (SS = 11.61); PSB: Allochromatium vinosum DSM 180 (SS = 10.737); SUR: Sur Methanosarcina barkeri MS (SS = 5.93); Sulfolobus acidocaldarius DSM

639 (SS = 5.457); Synechococcus sp. JA-2–3Ba 2–13 (SS = 3.704); Hyphomicrobium denitrificans 1NES1 (SS = 3.236); Ruegeria pomeroyi DSS-3 (SS = 2.707); Enterococcus durans
(SS = −0.194); Micrococcus luteus NCTC 2665 (SS = −3.588). (F) Heatmap showing the metabolic completeness of the metagenomes with the following MG-RAST IDs
and corresponding scores: 4489656.3 (SS = −2.649); 4440320.3 (SS = 0.1); 4441663.3 (SS = 9.986); 4510168.3 (SS = 7.781); 4493725.3 (SS = 9.547); 4461840.3 (SS = 8.813);
4441599.3 (SS = 9.274); 4451035.3 (SS = 9.918); 4525341.3 (SS = 9.287); 4489328.3 (SS = 4.958); 4478222.3 (SS = 4.88). The color codes at the top of the heatmap correspond

to different environments. For a more detailed description of each metagenome, see Table S8.
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14 De Anda et al.

a clear separation between those distributions (see Fig. S7B and
Table S10).

Completeness of S-metabolic pathways

As we described above, the MEBS pipeline models a metabolic
network as an array of S-related protein domains (Sucy-Pfam)
to ultimately use their entropies to produce the final score (SS).
For a closer look, we also dissected the total contribution of
independent domains at the network level in order to assess
whether SS depends on the partial or complete detection of
S-pathways. Consequently,we evaluated the pathway complete-
ness in both genomic (Gen) andmetagenomic (Met) datasets (see
Tables S11 and S12, respectively). Since the number of Pfam do-
mains per pathway goes from 1 to 29 (see Table 1 and Table S2),
we suspect that pathways represented by a single domainmight
not reflect their complete metabolic function. For example, the
pathways involved in the methanogenesis of compounds such
as dimethylsulfide (DMS, P24), methyl-thiolpropanoate (MTPA,
P25), andmethanethiol (MeSH, P26) are represented by the same
protein (MtsA, PF01208) in our Sucy database, as well as in Meta-
cyc [12]. Therefore, we expect that pathways P24–26 will have
identical presence-absence patterns in Gen and Met.

The boxplots in Fig. 7A and B summarize the distribution
of completeness for each S-metabolic pathway, including the
synthetic pathway (P29) composed by 12 candidate markers as
described in Table 2. As expected, the observed completeness
per pathway was higher in Met than in Gen, since microbial
communities harbor a wider repertory of metabolic functions
than single genomes. In the case of genomes, we noted that
a few pathways were complete in most genomes, the major-
ity being involved in the usage of organic sulfur compounds
such as alkanesulfonates (P9), sulfoacetate (P14), and biosynthe-
sis of sulfolipids (SQDG) and the single domain pathways P24–
26. Remarkably, we also detected a few organisms displaying
the highest levels of metabolic completeness in some S-energy
based pathways. For example, we found that Desulfosporosinus
acidiphilus SJ4 (SS = 8.91) was the only genome harboring the
complete repertory of Pfam domains described in Sucy for the
sulfite oxidation (P1), strongly suggesting that itmay oxidize sul-
fite. However, this activity remains to be tested in culture [63]. In
the case of thiosulfate oxidation (P3), we detected 3 genomes dis-
playing the highest levels of completeness, in agreement with
their ecological features: Hydrogenobaculum sp. Y04AAS1 (SS =
9.319) [64] and the CLSB: Acidithiobacillus caldus ATCC 51756 (SS =
6.525) [65] andAcidithiobacillus ferrivorans (SS= 7.436) [66]. For the
sulfate reduction dissimilative pathway (P5), out of 55 genomes
displaying the higher completeness levels, 67% are actually SRB,
12% are Sur genomes, and the rest are sulfur oxidation microor-
ganisms. Furthermore, the PSB Thioflavicoccus mobilis 8321 (SS =
9.756), isolated from a microbial mat [67], was the genome dis-
playing the most complete sulfide oxidation pathway (P11). Ele-
mental sulfur disproportionation (P21) is represented by a single
non-informative domain (PF07682,H′ = 0.172) that remarkably is
found in 14 sulfur respiring or related genomes such as Sulfolobus
tokodaii str. 7 (SS = 5.341) and Acidianus hospitalis W1 (SS = 3.88).
Finally, we identified 6 genomes encoding all 12 proposed mark-
ers. Among them, 3 were GSB (Pelodictyon phaeoclathratiforme
BU-1, SS = 11.836, Chlorobium chlorochromatii CaD3, SS = 11.625,
and Chlorobium tepidum TLS, SS = 11.354), 1 CLSB (Thiobacillus
denitrificans ATCC 25259 SS = 11.61), another 1 PSB (Thiocystis
violascens DSM 198, SS = 10.633), and finally 1 Sur (Sedimenticola
thiotaurini SS= 10.109). For a complete description, see Table S13.

A global view of metabolic completeness was obtained by
bulking the data from all pathways. Linear regression models
between mean completeness and SS that were computed con-
firm the yielding r2 values of 0.003 and 0.627 for Gen and Met,
respectively (See Fig. 7C and D). Moreover, we also assessed the
relationship between the mean completeness of the synthetic
pathway of candidatemarkers (P29) and the SS. As expected, sig-
nificant correlations were obtained in both datasets (r2 = 0.645
and r2 = 0.881 for Gen and Met, respectively) (see Fig. S8).

To get a more detailed insight into the completeness, we se-
lected a few genomes and metagenomes displaying high and
low SS values. Specifically, from the Gen dataset, we selected
1 representative from the main S-guilds, 1 Sur genome, and 2
genomes with low SS values (NS). As observed in Fig. 7, the
low-scoring genomes Enterococcus durans (SS = −0.194),Micrococ-
cus luteus NCTC 2665 (SS = −3.588), and Ruegeria pomeroyi DSS-
3 (SS = 2.707) display unrelated patterns of sulfur metabolic
completeness compared with the rest of the genomes and
therefore are separated. In contrast, high-scoring S-respiringmi-
croorganisms Desulfovibrio vulgaris DP4 (SS = 11.442), Sulfolobus
acidocaldarius DSM 639 (SS = 5.457), and Ammonifex degensii KC4
(SS = 12.508) are clustered together. We also observed that mat-
isolated cyanobacteria Synechococcus sp. JA-2–3Ba 2–13, classified
as NS with SS = 3.704, was clustered together with other high-
scoring genomes, in agreement with the lack of correlation re-
ported above.

In the case of metagenomes (see Fig. 7E), we observed
a clear correlation between SS and completeness. For exam-
ple, metagenomes 4440320.3 and 4489656.3, with the lowest
scores (SS = 0.1 and SS = −2.649, respectively), also exhibit the
largest number of incomplete pathways. Similarly, high-scoring
metagenomes derived from black smoker or marine sediment
are grouped together in terms of completeness.

Conclusions

Our study represents the first exploration of the Sulfur bio-
geochemical cycle in a large collection of genomes and
metagenomes. Themanually curated effort resulted in an inven-
tory of the compounds, genes, proteins, molecular pathways,
and microorganisms involved. This complex universe of artic-
ulated data was reduced to a list of microorganisms and Pfam
domains encoded in the proteins that take part in that net-
work. These domains were first ranked in terms of relative en-
tropy, and then summed to produce a single S-score represent-
ing the relevance of a given genomic or metagenomic sample in
terms of sulfur metabolic machinery. We took advantage of the
mathematical framework of information theory, which has been
widely used in computational biology.

The performance of the MEBS pipeline (designed for the
above-mentioned tasks) was benchmarked on large genomic
andmetagenomic sets. Our results support the broad applicabil-
ity of this algorithm in order to classify annotated genomes as
well as newly sequenced environmental samples without prior
culture. We also assessed to what extent the final score de-
pended on the partial or complete detection of pathways and
observed a higher completeness per pathway in metagenomic
sequences than in individual genomes.

We demonstrated that a measurable score can be applied to
evaluate any given metabolic machinery or biogeochemical cy-
cle in large (meta)genomic scale, holding the potential to dra-
matically change the current view of inferring metabolic capa-
bilities in the present “omic” era.
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Availability and requirements

Project name: MEBS
Project home page: https://github.com/eead-csic-compbio/

metagenome Pfam score
Operating system(s): Linux
Programming language: Python 3, Perl5, Bash,
Other requirements: HMMER
License: GNU General Public License (GPL)

Availability of supporting data

The datasets supporting the results of this article and snapshots
of theMEBS code in GitHub are available in theGigaDB repository
[68].

Supplementary files

The supplementary pdf file contains the following information:
Supplementary figure S1: Histogramdistribution of themean

size length ofmetagenomes inMet and the input sulfur proteins.
Supplementary figure S2: Visualization of the Pfam domains

mapped onto KEGG metabolic pathways.
Supplementary figure S3: Comparison of clustering methods

of the 112 Pfam entropies using script plot cluster comparison.py.
Supplementary figure S4: Clustering comparison between

Birch and Ward clustering methods to stand out the Pfam en-
tropies with high H′ and low std using the script.

Supplementary figure S5: Distribution of entropy values of
112 Pfam domains inferred from random-sampled and Suli
genomes.

Supplementary figure S6: Comparison of Sulfur Scores (SS)
with data obtained 3 years ago (2014), with the current data de-
scribed in the article.

Supplementary table S4: Informative Pfam’s with high H′ and
high std (not used as molecular marker genes) in metagenomic
fragmented data.

Supplementary table S5: Percentile distribution of the 112
Pfam entropies in the random test.

Supplementary table S10: Statistics of SS computed on ge-
nomic (Gen, real sequences) and metagenomic (Met, with in-
creasing mean size length, from 30 to 300 aa) datasets.

In separated Excel files, the following supplementary tables
are also provided:

Supplementary table S1: Table S1. Comprehensive list of the
taxonomic representatives of sulfur cycle including Sulfur list,
or “Suli,” containing 161 curated genomes used as input for the
pipeline.

Supplementary table S2: Sucy database containing the iden-
tifiers of the Sulfur proteins and their corresponding annota-
tions derived from Interproscan and manual curation.

Supplementary table S3: Sulfur Pfam domains (Pfam-Sucy),
and their corresponding mapping into KEGG (KO number), and
the manual assignation into sulfur metabolic pathways.

Supplementary table S6: Gen dataset containing their corre-
sponding SS and taxonomy assignment.

Supplementary table S7: Manual annotation of Sulfur un-
cosidered or related microorganisms (Sur) with Sulfur Score (SS)
greater or equal to four.

Supplementary table S8: Met dataset with corresponding SS
values and metadata.

Supplementary table S9: Manually annotated high-scoring
metagenomes along with their ecological capabilities in terms
of sulfur cycle.

Supplementary table S11: Metabolic completeness in Gen
dataset for each of the 28 metabolic pathways of the S-cycle de-
scribed in Table 1. (Pathway 29 contains the proposed marker
genes.)

Supplementary table S12: Metabolic completeness in Men
dataset for each of the 28 metabolic pathways of the S-cycle de-
scribed in Table 1. (Pathway 29 contains the proposed marker
genes.)

Supplementary table S13: Frequency and description of the
most complete genomes in terms of S-cycle metabolic path-
ways.
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Endnotes

We are currently finishing the analyses to demonstrate the
applicability of this approach to other biogeochemical cycles
(C, N, O, Fe, P). Thereby, we hope that the pipeline MEBS will fa-
cilitate analysis of biogeochemical cycles or complex metabolic
networks carried out by specific prokaryotic guilds, such as
bioremediation processes (i.e., degradation of hydrocarbons,
toxic aromatic compounds, heavy metals, etc.). We look forward
to collaborating with and helping other researchers by integrat-
ing comprehensive databases that might be helpful to the scien-
tific community. Furthermore, we are currently working to im-
prove the algorithm by using only a list of sequenced genomes
involved in the metabolism of interest in order to reduce the
manual curation effort. We are also considering taking k-mers
instead of peptide Hidden Markov Models to increase the speed
of the pipeline. We anticipate that our platform will stimulate
interest and involvement among the scientific community to
explore uncultured genomes derived from large metagenomic
sequences.
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