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An optimal strategy to solve the 
Prisoner’s Dilemma
Alessandro Bravetti1 & Pablo Padilla1,2

Cooperation is a central mechanism for evolution. It consists of an individual paying a cost in order 
to benefit another individual. However, natural selection describes individuals as being selfish and in 
competition among themselves. Therefore explaining the origin of cooperation within the context of 
natural selection is a problem that has been puzzling researchers for a long time. In the paradigmatic 
case of the Prisoner’s Dilemma (PD), several schemes for the evolution of cooperation have been 
proposed. Here we introduce an extension of the Replicator Equation (RE), called the Optimal 
Replicator Equation (ORE), motivated by the fact that evolution acts not only at the level of individuals 
of a population, but also among competing populations, and we show that this new model for natural 
selection directly leads to a simple and natural rule for the emergence of cooperation in the most basic 
version of the PD. Contrary to common belief, our results reveal that cooperation can emerge among 
selfish individuals because of selfishness itself: if the final reward for being part of a society is sufficiently 
appealing, players spontaneously decide to cooperate.

Cooperation is so important that it has been suggested as a fundamental principle of evolution, besides repro-
duction, mutation and selection1–13. However, the situation regarding the underlying mechanisms responsible 
for the emergence of cooperation among individuals who try to maximize their own fitness and who are com-
peting among each other is not clear. To try to solve such complicated puzzle, several mechanisms have been 
proposed during the last decades, including kin selection1,6, direct reciprocity2,3,14, indirect reciprocity15,16, net-
work reciprocity17,18, group selection9,19, green beards5,20, optional participation21,22, punishment and reward23,24, 
pre-commitments25–27 and others28–31. All these situations reflect some specific important aspects of real social 
and biological interactions. However, none of them can really provide a solution to the most basic version of the 
paradigmatic example of the Prisoner’s Dilemma (PD): here one imagines that two people that are suspected of 
having committed a joint crime are caught by the police and confined into different rooms, without the possibility 
to communicate. Each of them is offered the possibility to confess the crime and defect his partner in exchange 
for a reduced sentence. If only one defects, the other will get the full sentence. If they defect, both will have the 
sentence reduced. If they cooperate between themselves and do not confess, then they will immediately be freed. 
The situation can be exemplified in the following payoff matrix
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where C stands for “cooperation”, D for “defection”, and the entries denote the payoff for the row player. Thus, if 
they both cooperate, they get R points each (the “reward” for cooperation). If only one cooperates, then he gets S 
points (the “sucker’s” payoff), while the defector gets T (the “temptation” to defect). If they both defect, they get P 
points each (the “punishment” for defection).

As it is well-known, in the PD the payoffs satisfy T > R > P > S. In this situation the best option for each player 
is to defect, no matter what the other player does32. Thus both players defect and get P points each. However, this 
is less than the R points they would get if they had collaborated. This is the essence of the PD: mutual cooperation 
leads to a higher payoff than mutual defection, but it is not a “safe” strategy, exposing the player to exploitation by 
a defector, and therefore each player, in an attempt to maximize his own payoff, chooses to defect. Thus apparently 
there is no room for cooperation between such rational agents.
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We remark also that in this one-shot formulation of the PD, the game is not repeated (and thus direct and 
indirect reciprocity do not apply), there is no link between the two prisoners (neither a genetic one as in kin 
selection, nor a “social” one, as in the cases of network reciprocity and group selection), nor is there a special tag 
that the prisoners can use (thus ruling out green beards and tag-based donation) and finally, the two prisoners 
cannot decide whether to play or not (and hence optional participation cannot be used). Therefore our best can-
didate mechanisms for the emergence of a cooperative strategy between the two prisoners do not apply in this 
paradigmatic example and we are left with the fundamental question: is there any other reason that can lead the 
two individuals to cooperate in this case?

A related unsatisfactory aspect in the formulation of evolutionary biology in terms of replicator-type dynam-
ics with a fixed fitness landscape is the lack of adaptability: since the payoff structure is set from the beginning, 
e.g. (1) for the PD, and it completely determines the fitness of each strategy, the model is not flexible enough in 
order to incorporate changes in the payoffs which might happen over time. To overcome such difficulty, dynam-
ical models for the coevolution of the existing species and their fitness landscape have been proposed33–36. This 
subject is also fundamentally linked to the fact that evolution is similar to an optimization process: a population 
evolves in order to adapt as much as possible to some external conditions (which in turn may change in time). 
Some works from different perspectives have been recently proposed in this context37–39. In particular, in38 it has 
been argued that living systems adapt to the environment by performing an optimal control.

The aim of this work is to present a dynamical mechanism based on optimal control theory that has two main 
features: on the one side it generalizes the standard replicator-type dynamics to an evolution which can automat-
ically adapt to changes in the fitness landscape by exerting a dynamical control on the fitness itself and on the 
other side it provides a simple and natural rule for the emergence of cooperation in the basic formulation of the 
PD presented above. Remarkably, this rule seems quite reasonable for the two prisoners as well as in biological 
and social interactions.

Methods
To analyze the PD from a dynamical point of view, we need to switch the perspective from game theory to evo-
lutionary dynamics. Here the different strategies correspond to different types of individuals in a population 
competing by natural selection and the payoffs correspond to each type’s ability to reproduce, which is called 
the fitness. For simplicity, we consider a population with only two possible types (this is all we need in order to 
address the PD; including more types is straightforward in principle, but the calculations get more involved very 
quickly). The fundamental equation of evolutionary dynamics is the Replicator Equation (RE)

= − 〈 〉 =x x f ax f( ( ) ) 1, 2, (2)a a a

where xa is the relative abundance (frequency) of individuals of type a, fa(x) is the (frequency-dependent) fitness 
of type a, 〈 〉 = +x f x ff 1 1 2 2 is the average fitness of the population and the overdot denotes time derivative.

For the PD, there are only two possible strategies: C or D. Thus we can label the frequency of the population 
adopting each strategy as xC and xD respectively. Moreover, the fitness of each strategy is obtained from the payoff 
matrix (1) by combining each payoff with the probability that the opponent chooses the corresponding strategy, 
thus obtaining

= + = + .f Rx Sx f Tx Pxx x( ) , ( ) (3)C C D D C D

Without loss of generality, we assume S = 0. Using the fact that xC + xD = 1, after some algebra we can rewrite 
the RE and the fitnesses in terms of xC only, obtaining the following evolution equation for the frequency of 
cooperators

= − − − + −x x x T R x P x(1 )[( ) (1 )], (4)C C C C C

From which it is easy to deduce that there are only two fixed points xC = 0,1, and that only xC = 0 is stable, that is, 
cooperators are dominated by defectors (cf. Fig. 1).

Thus both game theory and evolutionary dynamics agree on the fact that the best strategy in the PD is to 
defect. Remarkably, the standard RE always favours defectors over cooperators whenever T > R > P > S, inde-
pendently of their relative values. Notwithstanding, one would expect that in real situations there should be a 
difference between e.g. the case T = 100, R = 10, P = 9, S = 0 and the case T = 5, R = 4, P = 1, S = 0. Notice also that 
in this classical treatment of the PD, the average fitness of the population decreases over time (see Fig. 2), meaning 
that the optimal strategy (defection) is optimal only with respect to the local payoff of each player, but it is not 
optimal with respect to the global payoff of the entire population. This is again the essence of the PD: by trying to 
maximize only their individual fitness, the prisoners do not achieve the best available fitness. Interestingly, this is 
unstable whenever the population is not isolated, but it is under evolutionary pressure by some other population, 
meaning that whenever selection acts both at the level of single individuals in a given population and at the level 
of competing populations, a strategy considering only the former aspect is destined to be suppressed by one con-
sidering both features (this is the main reason why group selection achieves cooperation9,19).

Let us now use this observation in order to construct a mechanism that boosts the emergence of collaboration 
among competing individuals. Motivated by the fact that being part of a society provides in many situations a 
concrete evolutionary advantage for each organism, we assume that natural evolution acts by two mechanisms: 
on the one side it selects those individuals inside a population with higher fitness at any given time, and on the 
other side it selects those populations with the higher final average fitness (we can see this process as due to the 
existence of two time scales, a faster one, in which selection operates at the level of individuals in a population, 
and a slower scale, in which selection operates among populations). We require the evolution in the faster scale 
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to be dictated locally in time by the standard RE. Finally, in order to obtain a model sensitive to changes in the 
environment, we suppose that the fitness of each strategy can be regulated in response to the present state of the 
population (this is similar to the coevolution mechanisms proposed e.g. in refs33,34).

The above assumptions can be translated into the mathematical problem of maximizing a functional which 
consists of two terms (one corresponding to selection at the level of individuals, and one corresponding to selec-
tion at the level of populations) subject to a dynamical constraint set by the standard RE. In order to find the best 
strategy to realize this task, we need to solve a maximization problem (similar ideas have been put forward in37–39).  
This is the arena of Optimal Control Theory (OCT)40–43. By applying OCT we obtain (see Supplementary 

Figure 1. Evolution of cooperators (C) and defectors (D) in the PD. On the left panel we present the evolution 
according to the standard Replicator Equation, while the right panel is the evolution of the same system 
according to the Optimal Replicator Equation introduced here. The payoffs and the initial conditions used 
in these examples are reported in Table 1. While the standard RE predicts that cooperators disappear during 
evolution, the ORE shows the emergence of cooperation.

T R P S xC
0

Model 1 5 4 1 0 0.3

Model 2 4 3 2 0 0.2

Model 3 4 3.5 0.5 0.5 0.1

Table 1. Models used for the graphics. We report the values of the payoffs and of the initial conditions used in 
the different models given in Figs 1 and 2.

Figure 2. Evolution of the average fitness of the population in the PD. On the left panel we present the 
evolution according to the standard Replicator Equation, while the right panel is the evolution of the same 
system according to the Optimal Replicator Equation introduced here. The payoffs and the initial conditions 
used in these examples are reported in Table 1. While using the standard RE the average fitness of the 
population decreases and approaches the payoff for mutual defection (P), in the system governed by the ORE 
the average fitness increases and approaches the payoff for mutual cooperation (R).
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Information) an enlarged system of equations that extends the RE (2) and describes the dynamical equations for 
the coevolution of the frequencies x in the RE and the fitnesses f. For a = C, D, as in the case of the PD, this system 
reads

=f p1
2

, (5)a a
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The additional variables pC and pD are usually called the co-states (see Supplementary Information). We call the 
system (5)–(7), together with the initial conditions =x x(0)a a

0 and the terminal conditions
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the Optimal Replicator Equation (ORE). In the following we show that the ORE leads directly to a simple rule for 
the emergence of cooperation in the PD.

Results
Let us consider now the PD in terms of the ORE. As usual, we use xC + xD = 1 to simplify (6),(7) by eliminating the 
equation for xD. Indeed, one can use = − x xD C to rewrite the two equations in (6) as a single equation for xC, 
which reads

= −
−

.x x x
p p

(1 )
2 (9)C C C

C D

Thus we see that we have obtained already a simple condition for the emergence of cooperation, that is, 
− >p p 0C D . Since by the optimal control strategy (5), pC and pD correspond to the fitness of cooperators and 

defectors respectively, the above condition seems almost trivial at first sight: cooperation emerges whenever 
fC > fD. Nevertheless, this condition is not trivial in this case, at least for two reasons: firstly, it is obtained as the 
result of an optimal strategy; secondly, and most importantly, because the two variables pC and pD are dynamical, 
with dynamical equations (7) and terminal conditions determined by the choice of the final average fitness 
according to (8). This aspect is crucial in the solution of the PD.

Let us return to the case of our two prisoners, with payoff matrix as in (1). Now we consider the payoffs in (1) 
as a final payoff given at time t = τ and use the ORE with the final fitness for each strategy given by (3). As before, 
we assume S = 0, thus the final average fitness is

τ τ τ τ τ= + +g Rx Tx x Pxx( ( )) ( ) ( ) ( ) ( ) , (10)C C D D
2 2

and the terminal conditions (8) read

τ τ= − +p R T x T( ) (2 ) ( ) , (11)C C

τ τ= − + .p T P x P( ) ( 2 ) ( ) 2 (12)D C

the system of equations (7) and (9), together with the initial conditions =x x(0)C C
0 and = −x x(0) 1D C

0 and 
the terminal conditions (11),(12) is our dynamical model for the PD. Using (9) and (11),(12) one can prove that 
for

≤ ≤P T R2 2 , (13)

the right hand side of (9) at t = τ is always greater than or equal to zero, with equality only for xC = 0, 1. This 
means that this evolution admits only two equilibria, namely xC = 0,1 and that only xC = 1 is asymptotically stable. 
Therefore (13) is the condition for the emergence of cooperation in the PD using the ORE. Typical numerical 
solutions are given in Fig. 1. As we see, contrary to the standard RE, according to the ORE cooperators take over 
the population.

Another difference with respect to the standard RE is that the average fitness of the population increases 
with the ORE: while the standard evolution dictated by the RE predicts that the average fitness of the popula-
tion decreases, approaching the payoff of mutual defection (see Fig. 2), the ORE predicts that selfish individuals 
cooperate in order to maximize the final average fitness of the population, because this entails an advantage for 
themselves.

The reason for the cooperative behavior in the ORE is simple: using the ORE we have extended the RE to a 
dynamics which considers the important evolutionary advantage for each individual deriving from being in a 
population that has a large final average fitness. Knowing that in case of collaboration they will be able to share 
an important final payoff, naturally induces the two prisoners to collaborate. Interestingly, collaboration only 
appears whenever R is “high enough”, that is, whenever 2R ≥ T, and also whenever P is “low enough”, that is, 
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whenever 2P ≥ T. In both cases the prisoners do not find advantageous to defect, and prefer to take the risk to be 
exposed to exploitation rather than taking a lower payoff. They consider that in such cases the risk is worth the 
price (cf.44).

In biology we can safely assume that in many situations being part of a society guarantees a much higher 
probability of survival, for instance because it provides better strategies for the collection of food, or for reproduc-
tion, or for defense against predators. In this biological setting, we argue that the effect of cooperation can only 
be assessed at the level of the average fitness of the whole population. So, even if a tendency to cooperate might 
be inherited, its evolutionary advantage can only be evaluated collectively a posteriori and therefore cannot be 
included in a local term for the RE, but rather as a final condition. A striking example is provided by bees: in bees 
society, usually only queens can reproduce. Therefore an evolution based only on the ability to reproduce would 
lead very quickly to the disappearance of any worker bee. However, workers play an important role for finding 
food and defending the hive. Cooperation between queens and workers means that the former guarantee repro-
duction for the latter, while the latter work for the former. This leads to a huge final reward, that is, the conserva-
tion of the species after each generation.

Finally, let us stress that while in the case of the PD the two prisoners can be aware of the final reward for 
collaboration and therefore they can (consciously) decide to cooperate under the appropriate conditions, in a 
biological setting we can no longer give a similar interpretation. However, as it is usual in evolutionary dynamics, 
we suppose that the different individuals in the population inherit the possible traits randomly and that evolution 
favours only those individuals with the best traits, so that the optimization process is a consequence of natural 
selection and not a conscious decision in such case.

Discussion
To summarize, we have proposed a modified version of the Replicator Equation (RE), the equation governing 
natural selection, called the Optimal Replicator Equation (ORE), which stems from the assumption that evolution 
is an optimization process that on the one side selects at any given time those individuals with higher fitness and 
on the other side favours those populations with higher average fitness. The main motivations for the introduc-
tion of such model are the facts that the standard RE cannot account for selection on the two levels of individuals 
and populations and that it fails to reproduce observed situations, such as the emergence of cooperation in the 
Prisoner’s Dilemma. Interestingly, by implementing our model (which by definition takes into account the two 
levels of selection among individuals and populations) to the case of the PD, we have shown that the correspond-
ing dynamics naturally favours cooperation in the case of the basic Prisoner’s Dilemma under some reasonable 
conditions (cf. (13)). Our results thus open the door for an investigation of evolution and social dilemmas in terms 
of optimization by using the reproduction coefficients – i.e. the fitness – as control parameters. In particular, it 
would be interesting for future work to compare the condition for the emergence of cooperation obtained here 
with data from various experiments on the PD and with conditions derived from similar models44–46. Moreover, 
one can enlarge the study of the optimal strategies deriving from the ORE by considering different social dilem-
mas beside the PD. We expect to find results on the emergence of cooperation similar to the ones presented here, 
thus enforcing the idea that the ORE can be a good dynamical model for explaining the emergence of cooperation 
in a competitive framework.
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