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Self-organizing traffic lights have shown considerable improvements compared to traditional methods in computer simulations.
Self-organizing methods, however, use sophisticated sensors, increasing their cost and limiting their deployment. We propose a
novel approach using simple sensors to achieve self-organizing traffic light coordination. The proposed approach involves placing
a computer and a presence sensor at the beginning of each block; each such sensor detects a single vehicle. Each computer builds
a virtual environment simulating vehicle movement to predict arrivals and departures at the downstream intersection. At each
intersection, a computer receives information across a data network from the computers of the neighboring blocks and runs a
self-organizing method to control traffic lights. Our simulations showed a superior performance for our approach compared with
a traditional method (a green wave) and a similar performance (close to optimal) compared with a self-organizing method using
sophisticated sensors but at a lower cost. Moreover, the developed sensing approach exhibited greater robustness against sensor
failures.

1. Introduction

Vehicular traffic has a number of negative effects in urban
areas such as increased pollution, excessive fuel consumption,
time lost in traffic, and stress. Traffic congestion occurs when
the density (number of vehicles per unit length) creates a
demand greater than the available space necessary for free
flow on roads. This problem has motivated governments
to regulate traffic flow (number of vehicles per unit of
time) in attempts to reduce traffic congestion. Rules have
been introduced to mediate potential conflicts between cars.
Drivers have agreed on which side of the street to drive
through, lanes regulate space usage, traffic signals prompt safe
driving, and traffic lights coordinate crossings.

A traffic light system will be more efficient if average
speeds are increased, thereby reducing waiting times, fuel

consumption, and pollution. For decades, researchers have
been using mathematical and computational methods to find
appropriate phases and offsets to regulate traffic lights [1–
7]. An open-loop control method, called “green wave,” has
been implemented in some areas of many cities to control
traffic lights. The idea behind the green wave method [8]
is as follows: if the consecutive traffic lights switch with a
delay equivalent to the expected vehicle travel time between
intersections, vehicles should not have to stop. Thus, waves
of green light move through the street at the same velocity as
vehicles.

The green wave method can be useful because it is better
than having no coordination at all. However, the green wave
approach does not consider the current traffic conditions. At
low densities, some vehicles wait behind a red light while
the intersection is not used. On the other hand, at high

Hindawi
Complexity
Volume 2017, Article ID 7691370, 15 pages
https://doi.org/10.1155/2017/7691370

https://doi.org/10.1155/2017/7691370
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(a) At low densities, idle intersections, while cars wait
at red light

(b) At high densities, gridlocks at intersections, as
saturation is not sensed

Figure 1: Two disadvantages of the green wave method.

(a) View from front camera (b) View from back camera

Figure 2: In the case of the self-organizing method, if a closed-loop system (CCTV) is used, a camera for each street where vehicles enter the
intersection to detect approaching vehicles is required and a camera for every street is required where vehicles exit the intersection to detect
vehicle dropout. From the images acquired, an algorithm recognizes vehicles approaching and leaving the intersection.

densities, gridlocks at intersections are formed because the
controller does not consider road saturation (see Figure 1).
Since the green wave method does not adapt to the current
traffic conditions, it is common that vehicles go slower than
the green wave due to traffic density. Moreover, in realistic
street networks, only two directions can be coordinated, so
a considerable fraction of vehicles go against green waves,
substantially increasing their waiting times.

An alternative to improve the performance of vehicular
traffic is to use advanced traffic lights. The main proposed
control systems using advanced traffic lights focus primarily
on sensors placed at the intersection to count the vehicles
approaching in certain distance [1–3]. However, themain dis-
advantages that prevent the implementation of such systems
are related to cost and, in some cases, privacy.

A method for controlling traffic lights using self-
organization has outperformed in simulations the greenwave
method and has been shown to be close to optimality [4].
The essential idea of the self-organizing method is to use
advanced traffic lights where sophisticated sensors detect
vehicles approaching and departing from each intersection.
The traffic light gives preference to the direction with

most vehicles in upstream or with most space available
downstream. However, because this method also requires a
sophisticated infrastructure, it has the same drawbacks of
the systems mentioned previously (see Figure 2). Moreover,
cameras are not suitable for detecting vehicles in visibility-
limiting weather.

2. Related Work

This work focuses on vehicular traffic modeling based on
cellular automata (CA). CA have an important role in
the modeling of complex systems mainly because of the
simplicity of their specification and the complexity in their
behavior.Moreover, CA are computationally inexpensive and
they can be parallelized allowing the simulation of large cities
in the order of thousands of intersections. Time and space are
discrete.

The behavior of vehicles on the streets can be modeled
with the elementary cellular automaton (ECA) rule 184; this
rule has been used to model traffic flow [9–12]. An ECA
consists of a linear array of cells where the current state of
each cell depends on its previous state and the current states
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Figure 3: Set of rules applied in the ECA city model (184, 252, and 136) and the configuration of rules around an intersection [13].

of its two closest neighbors. Each cell can take only values of
0 or 1. We can assume that one cell represents five meters,
roughly the space occupied by a stationary vehicle.

Rule 184 simulates traffic flow so that vehicles are repre-
sented by 1 s and spaces are represented by 0 s. If the value of a
cell is 0 and its closest neighbor to the left has value of 1, then
in the next step of time the value of such a cell will change to
1. On the other hand, if the value of a cell is 1 and its closest
neighbor to the left has value of 0, then in the next step of
time the value of such a cell will change to 0. This models the
movement of vehicles to the right. In the simulations to be
presented below, streets are assumed to have only one lane in
four different directions, forming aManhattan-style grid [13].
If a light is red, all cells use rule 184 with two exceptions: rule
252 is applied to the previous cell of the intersection and rule
136 is applied to the next cell. In Figure 3, transition tables for
the three rules used by the model are listed. The intersection
cell is a special case, as it has four potential neighbors. The
rule never changes (184). What changes is the neighborhood;
that is, it takes as nearest neighbors only the two cells in the
street with a green light (also using rule 184). A diagram of
the cells around an intersection is shown in Figure 3.

Rule 252 is used to stop traffic flow. If there is a vehicle
in the central cell (i.e., 010, 011, 110, and 111), it will remain
there, so that the future state of the cell will remain 1. If there
is a vehicle in the previous cell (i.e., 100 and 101), the next
state of the cell will be 1. Only if there are no vehicles in the
previous and central cell (i.e., 000 and 001), the state of the
cell will remain at 0. Rule 136 is used to allow vehicles tomove
forward and to prevent vehicles crossing an intersection from
“turning,” entering another street. Therefore, the future state
of the cell will be 1 only if the cell ahead is occupied (i.e., 011
and 111).

The model of vehicular traffic proposed by Nagel and
Schreckenberg [14] (NaSch) can be seen as elaboration of
ECA rule 184 with the following extensions: a discrete vari-
able representing the velocity associated with each vehicle,
an acceleration, a deceleration (due to the presence of other
vehicles), and a random tendency to slow down. This decel-
eration attempts to model a human tendency to overreact
while braking. The NaSch model exhibits phantom traffic

jams and, depending on both the density and the probability
of slowing down, these spontaneous jams appear or disappear
indefinitely. Because a vehicle can have a velocity greater than
one cell per time step, the NaSch model is not an ECA. The
reason is that the next state of a cell depends not only on its
nearest neighbors.

Many variants of the NaSch model have been proposed,
each with different degrees of realism. For example, the work
presented by Nagel and Paczuski [15] inhibits the random
deceleration of vehicles traveling at maximum velocity. This
change eliminates phantom traffic jams and reproduces the
slower-is-faster effect [16]. In the work presented by Fukui
and Ishibashi [17], the authors consider only random behav-
ior for vehicles traveling at maximum velocity. The random
slowing of vehicles at full velocity models the fact that drivers
traveling at high velocity (with no cruise control) cannot
concentrate on the road indefinitely.

Cellular automaton traffic flow modeling for two dimen-
sions was conceived by Biham et al. [18]. In this model
(BML), each cell represents an empty space or a vehicle that
is traveling to the right or up. Except for the initial random
positioning of the vehicles, this automaton is deterministic.
Periodic boundary conditions are considered so that the
number of vehicles is preserved. On even steps, only vehicles
pointing upward move, while in odd steps, only vehicles
pointing right move, unless a nonempty space is in front.

The BML model is interesting for showing complex
behavior (descriptive model) but not a realistic (predictive)
model of vehicular traffic. More realistic vehicular traffic
models have been developed as generalizations of the BML
model [19–22]. Such generalizations are essentially an exten-
sion BML model for which the streets have an arbitrary
length (instead of a single cell) and vehicles traveling between
the intersections behave according to the NaSch model.
Traffic lights are incorporated into models making vehicles
decelerate or stop not only because a vehicle is in front but
also when approaching a red light.

Schadschneider et al. [21] experimented with a regular
grid where vehicles move only right or upwards. Traffic lights
were synchronized alternating between green and red (also
called “marching” [23]).
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In the work presented by Simon and Nagel [19], the
authors developed a more elaborate combination of the BML
and NaSch models. Streets with different capacities can be
modeled. For example, different numbers of lanes can be
considered, without explicitly simulating several lanes. For
computational reasons, the computer program used random
traffic lights, which have the advantage of having to be
checked only when a vehicle reaches the intersection.

In relation with self-organizing traffic lights, the work
presented by Gershenson and Rosenblueth [4, 5] is focused
on the modeling of traffic lights to compare the perfor-
mances of different control methods using elementary cel-
lular automata and proposing various rules to increase the
traffic flow. Twomethods were evaluated to coordinate traffic
lights: the traditional method called green wave and the self-
organizing method. The simulations revealed the superiority
of the self-organizing method over the green wave method in
terms of traffic flow in a wide range of densities.

The approach by Lämmer and Helbing [7] assumes a
priority-based control of traffic lights by the vehicle flows and
platoons. The considered local interactions lead to emergent
coordination patterns such as green waves and achieve an
efficient, decentralized traffic light control.

In the work by de Gier et al. [6], the authors compare the
effects of nonadaptive versus adaptive traffic lights on generic
urban road networks based on cellular automata, in which
instantaneous traffic state information is sent to the traffic
signal schedule. The results show that the adaptive traffic
lights result in better performance compared to nonadaptive
ones.

The work by Goel et al. [24] investigates the use of
a distributed traffic signal control algorithm based on the
concepts of self-organization. The distributed traffic signal
control algorithm is benchmarked against traditional traf-
fic signal algorithms. The distributed traffic signal control
algorithm performs significantly better compared to the
traditional traffic signal algorithms. A simulation model was
created based on an abstraction of city road with multiple
intersections using data on actual traffic counts.

The research by Cesme and Furth [25] explores a
paradigm “self-organizing signals” for traffic signal control
based on local rules that create coordination mechanisms.
Simulation tests in VISSIM performed on arterial corridors
in Massachusetts and Arizona show overall delay reductions.

3. Traffic Light Controllers and Measures

This section presents the green wave and self-organizing
methods [4]. In addition, the measures used to evaluate the
performance of the methods are described in this section.

3.1.The GreenWaveMethod. The idea behind the green wave
method is the following: if the consecutive traffic lights switch
with an offset (i.e., delay) equivalent to the expected vehicle
travel time between intersections, vehicles should not have to
stop. Thus, waves of green lights move through the street at
the same (expected) velocity as vehicles.

This method has advantages, for example, when most
of the traffic flows in the direction of the green wave at

low densities. However, vehicles flowing in the transverse
direction of the green wave will be delayed. Also, if traffic is
flowing at velocities lower than expected, the greenwaves will
go faster than vehicles and there will be delays.

Implementing the green wave method in our ECAmodel
requires synchronization of the traffic light cycle 𝑇 with the
travel time of the vehicles. This is achieved in our model only
if the length of the street is a multiple of cycle 𝑇 and periodic
boundary conditions are applied. The traffic light cycle 𝑇 is
split into 𝑇/2 for green and red light, respectively.

The lights can be in a state of a green light horizontally
(east or westbound) and red light vertically (north or south-
bound) or a state of a green light vertically and a red light
horizontally. The state 𝜎𝑖 of the traffic lights is initialized as
follows:

𝜎𝑖

= {
{
{
greenvertical if ⌊((𝑥 − 𝑦)mod𝑇) + 0.5⌋ ≥ 𝑇

2
greenhorizontal otherwise.

(1)

Equation (1) initializes the state of a traffic light to have
a green vertical light if the nearest integer of 𝑥 coordinate
minus 𝑦 coordinate, modulus one cycle 𝑇, is greater than or
equal to half a cycle. Otherwise, the state is set as horizontal
green.With this equation, 50% of contiguous intersections of
every street (vertical and horizontal) will have a green vertical
state and the other half will have a green horizontal state.
The states of intersections are arranged in such a way that the
transitions fromhorizontal green to vertical green lie on skew
diagonals.

In addition, in order to set the green wave a local offset𝑤𝑖
is necessary for each traffic light. This offset is determined by
the coordinates 𝑥 and 𝑦 of the intersection cells as follows:

𝑤𝑖 = ⌊((𝑥 − 𝑦)mod𝑇2 ) + 0.5⌋ . (2)

Equation (2) sets the offset by rounding to the nearest
integer of 𝑥 coordinateminus 𝑦 coordinate, module𝑇/2.This
offset creates green waves to the south and east for regular or
irregular grids. The purpose of setting the offset is to make
intersections lying on the skew diagonals have the same offset
value so as to switch their lights at the same time. In this way,
free-flowing vehicles going either eastbound or southbound
will be able to reach an intersection with a green light. To
change the direction of the green wave, only the sign of 𝑥 or
𝑦 coordinate has to be changed.

3.2. The Self-Organizing Method. It has been postulated that
the control of the traffic lights should not be addressed as an
optimization problem but as an adaptation problem because
traffic flows and densities constantly change [23]. Another
reason to prefer an adaptive method is that the optimiza-
tion has a high computational cost to search for possible
solutions, as it is an EXP-complete problem [8]. An adaptive
method that applies self-organization has shown substantial
improvements in increasing traffic flow at different densities
compared to the green wave method [4].
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Figure 4: Rule 1 attempts to turn a red light green when many vehicles approach it. Rule 2 prevents fast switching of traffic lights for high
densities and also prevents a street from having always a green light. Rule 3 prevents “tails” of platoons from being cut, promoting the
integrity of platoons. Rule 4 allows a quick change of lights at low densities, as isolated vehicles can activate the lights change as they approach
an intersection without requiring them to form platoon. Rules 5 and 6 prevent gridlocks caused by stationary vehicles at intersections, while
allowing flow in directions with space downstream.

The essential idea of the self-organizing method is to
equip traffic lights with sensors that detect approaching vehi-
cles. The traffic lights give preference to the street with most
vehicles. Without requiring local communication, vehicles
self-organize into “platoons” which flow faster as they can
trigger a green light before reaching an intersection, stopping
only when another platoon is crossing.

With the self-organizing method, each intersection fol-
lows independently the same rules based solely on local traffic
information. There are six rules (unrelated to ECA rules),
where higher-numbered rules override lower-numbered
rules. The parameters to be considered in the self-organizing
method and the full set of rules are shown below (see
Figure 4).

The algorithm of the self-organizing method is given as
follows:

(1) On every tick, add to a counter the number of vehicles
approaching or waiting at a red light within distance
𝑑.When this counter exceeds a threshold 𝑛, switch the
light (whenever the light switches, reset the counter to
0).

(2) Lights remain green for a minimum time 𝑢 and a
maximum time 𝑤.

(3) If few vehicles (𝑚 or fewer, but more than zero) are
left to cross a green light at a short distance 𝑟, do not
switch the light.

(4) If no vehicle is approaching a green light within a
distance 𝑑 and at least one vehicle is approaching the
red light within a distance 𝑑, then switch the light.

(5) If there is a stationary vehicle on the road at short
distance 𝑒 beyond a green traffic light, then switch the
light.

(6) If there are stationary vehicles on both directions at a
short distance 𝑒 beyond the intersection, then switch
both lights to red. Once one of the directions is free,
restore the green light in that direction.

Rules with a higher number override rules with a lower
number; for example, rule 5 overrides rules 1–4. The details
and rationale for all rules can be found in [5]. It should be
mentioned that maximum time 𝑤 was added to rule 2 in

this work, because when sensor errors occur, vehicles at low
densities may remain undetected indefinitely behind a red
light.

3.3. Performance Measures. The behavior of the model will
depend strongly on the vehicle density 𝜌 ∈ [0, 1]. Trivial cases
are the extremes 𝜌 = 0, where there are no vehicles, and 𝜌 = 1,
where all cells are occupied by vehicles, so there is no space
to move and flow is zero. The density can be easily calculated
by dividing the number of cells with 1 (i.e., total number of
vehicles, ∑𝑠𝑖) by the total number of cells (|𝑆|).

𝜌 = ∑ 𝑠𝑖
|𝑆| . (3)

The performance of the system can be measured with
velocity V ∈ [0, 1], which is simply the number of cells that
changed from 0 to 1 over the total number of vehicles:

V = ∑ (𝑠󸀠𝑖 > 0)
∑ 𝑠𝑖 , (4)

where 𝑠󸀠𝑖 is the derivative of state 𝑠𝑖. If 𝑠󸀠𝑖 = 1, the cell changed
from 0 to 1. If 𝑠󸀠𝑖 = −1, the cell changed from 1 to 0. 𝑠󸀠𝑖 = 0
when there is no change in the state of 𝑠𝑖, that is, there is no
vehicle, or the vehicle at 𝑠𝑖 has stopped.

The flow 𝐽 of the system represents howmuch of the space
is used by moving vehicles. It can be obtained by multiplying
the vehicle density by the velocity:

𝐽 = 𝜌𝜐. (5)

In the ECA rule 184 model of highway traffic, the
maximum possible flow is 𝐽 = 0.5 at a density 𝜌 = 0.5. This is
because vehicles need at least one cell between them tomove.
If there are fewer vehicles, the flow will be lower, since there
is no movement in free space. If there are more vehicles, then
the flow will also be lower, since stationary vehicles do not
move.

When coordinating traffic lights, the best performance
that can be theoretically achieved would be a system in which
each intersection has the best performance possible of an
isolated intersection. A lower performance implies that there
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Computer
Camera

(a) Computer-sensor (b) Top view from the camera

Figure 5:The computer-sensor shown in (a) is composed of a computer and a sensor which could be a simple camera.The example illustrates
possible implementation of the sensor. However, the sensor may be an inductive loop, radar, or infrared sensor. In (b), the image obtained by
computer-sensor is shown, in which only a car is recognized in the sensing area.

is interference between traffic lights. Given the properties of
our model of city traffic, (6) describe the optimal curves for
single intersections of velocity and flow, which depend on the
maximum flow 𝐽max allowed by an intersection:

Voptim =

{{{{{{{
{{{{{{{
{

1 if 𝜌 ≤ 𝐽max

𝐽max
𝜌 if 𝐽max < 𝜌 < 1 − 𝐽max

1 − 𝜌
𝜌 if 1 − 𝐽max ≤ 𝜌

𝐽optim =
{{{{
{{{{
{

𝜌 if 𝜌 ≤ 𝐽max

𝐽max if 𝐽max < 𝜌 < 1 − 𝐽max

1 − 𝜌 if 1 − 𝐽max ≤ 𝜌.

(6)

If 𝜌 ≤ 𝐽max, then the intersection can support a maximum
velocity of 1 cells/tick. Following (5), the flow will then be
equal to the density 𝜌, as all vehicles aremoving. If 𝐽max < 𝜌 <
1 − 𝐽max, then the flow of the intersection will be restricted
by the maximum capacity of the intersection, that is, 𝐽max.
This implies that vehicles will be using the intersection at all
times, and the average velocity will be 𝐽max/𝜌. If 1 − 𝐽max ≤ 𝜌,
the density of the streets is so high that it restricts the flow of
vehicles on streets, reducing the flow to 1−𝜌 and the velocity
to (1 − 𝜌)/𝜌.

Notice that the flowoptimum 𝐽optim is symmetric, because
there is symmetry in our city traffic model between vehicles
(1 s) moving in one direction and spaces (0 s) moving in the
opposite direction.This is also observed in the rule 184model
of highway traffic [12].

4. Deliberative Self-Organizing Traffic Lights

As an alternative to the limitations of the sensors required
originally by the self-organizing method [5], we propose an
approach using simple sensors to achieve self-organization.
This involves placing at the beginning of each block a
computer and a presence sensor which together are called

computer-sensor. In the same way, a computer and a traffic
light are placed at each intersection which together are called
computer-light.

The computer-sensor can detect only one vehicle at each
time step (see Figure 5), as opposed to detecting several
vehicles approaching an intersection at each time step. The
computer-sensor that detects vehicles at the beginning of
each block builds a virtual environment that simulates the
movement of vehicles to predict which vehicles are arriving
and leaving the intersection located at the end of the block
(downstream). The vehicles simulated in the virtual environ-
ment by the computer-sensor are called virtual vehicles.

The computer-light receives information across a data
network from the computer-sensors of the neighboring blocks
and runs the self-organizing method to control the traffic
light.

Then, for each block, the system is composed of a
computer-sensor placed before the downstream intersection
that sends information to the downstream computer-light (for
rules 1–4) and upstream computer-light (for rules 5 and 6) (see
Figure 6).

In this work, we use an ECA to simulate the virtual
environment.The virtual vehicles that are at or after computer-
sensor position and before the intersection are part of the set
of virtual-vehicles-received by the downstream intersection.
The virtual vehicles that are at or after the intersection and
before the position downstream computer-sensor are part of
the set of virtual-vehicles-sent (see Figure 7).

This approach compared to the current proposals using
sophisticated sensors has the following advantages:

(i) The infrastructure cost is lower because the sensor
and detection algorithm are less sophisticated. For
example, the computer-sensor can be integrated by a
Raspberry Pi and an economic camera.

(ii) Privacy is respected because the sensor is directed
only to a small sensing area marked on the street.
Therefore, users (pedestrians or drivers) and their
routes cannot be identified.
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(a) Computer-light

computer-light
Upstream

Computer-sensor

Downstream
computer-light

(b) System components

Figure 6: The computer-sensor sends information of the positions of the virtual vehicles predicted to the downstream computer-light. The
computer-sensor also sends a message to the upstream computer-light to report if a vehicle is stationary in the sensing area. With information
from local computer-sensors, each computer-light applies the self-organizing method.

1 765432 8 109

Virtual environment
Virtual-vehicles-received Virtual-vehicles-sent

Position of
computer-sensor

Position of
intersection

Bidirectional
communication

Bidirectional
communication

1 1 1 1 1 1 1

Figure 7: Each computer-sensor uses a local simulation to predict the vehicles between the computer-sensor and the downstream computer-
light.

(iii) Vehicles do not require GPS (Global Positioning
System), RFID (Radio-Frequency Identification), or
other technologies to interact with the infrastructure.

However, with this approach, a data network for the
exchange of information is required. In the case of sophis-
ticated sensors, a data network is not required, as there is
no direct communication between intersections, although a
network is desirable for system monitoring.

In this work, we call the self-organizing method with
sophisticated sensors a reactive method because it bases its
actions on current perceptions. The reactive method only
maintains a counter wait time of the stationary vehicles
behind a red light; however, it ignores the rest of the historical
perceptions. On the other hand, we call self-organizing
method with simple sensors a deliberative method because
each sensor maintains an internal state that depends on the
perceived history and decides whether vehicles are stationary
or are approaching in the upstream and downstream inter-
sections.

4.1. Deliberative Sensors Algorithm. The algorithm that runs
the computer-sensor is responsible for simulating the vir-
tual environment with both the information perceived by
the sensor and the messages received by the downstream
computer-light. The computer-sensor sends the information
to the downstream computer-light to run the self-organizing
traffic lights method. In addition, the computer-sensor sends
information to theupstream computer-light to indirectly share
this information with the computer-sensor in the upstream
block. The variables used in the algorithm that runs the
computer-sensor are shown in Notations.

When the computer-sensor starts its execution, it has no
information on the density of vehicles that are on its block,
so it assumes the worst case and completely fills the space
reserved for the set of virtual-vehicles-received in the virtual
environment. In addition, the computer-sensor initializes the
value of variables 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 and 𝑠𝑒𝑛𝑡 to zero. Subsequently,
Algorithm 1 is executed at each time step.

The algorithm initializes the values of the variables 𝑠𝑡𝑜𝑝
and 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 to false (lines (1)-(2)). If there is a vehicle in
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(1) 𝑠𝑡𝑜𝑝 = 𝑓𝑎𝑙𝑠𝑒;
(2) 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑓𝑎𝑙𝑠𝑒
(3) V𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝑡𝑎𝑡𝑒 = IsThereVehicle();
(4) V𝑖𝑟𝑡𝑢𝑎𝑙𝑠𝑡𝑎𝑡𝑒 = isThereVirtualVehicle();
(5) if V𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝑡𝑎𝑡𝑒 = 𝑡𝑟𝑢𝑒 then
(6) if V𝑖𝑟𝑡𝑢𝑎𝑙𝑠𝑡𝑎𝑡𝑒 = 𝑓𝑎𝑙𝑠𝑒 then
(7) setVirtualVehicle();
(8) end if
(9) V𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝑡𝑜𝑝 = Stationary();
(10) if V𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝑡𝑜𝑝 = 𝑡𝑟𝑢𝑒 then
(11) 𝑠𝑡𝑜𝑝 = 𝑡𝑟𝑢𝑒;
(12) else
(13) 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 = 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 + 1;
(14) end if
(15) end if
(16) 𝑝𝑎𝑐𝑘𝑎𝑔𝑒1 = ReceikesMessageDownstreamCL();
(17) 𝑙𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑡𝑒 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒1.𝑙𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑡𝑒;(18) 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒a𝑚 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒1.𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚;(19) 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑𝑑𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒1.𝑟𝑒𝑐𝑒𝑖V𝑒𝑑𝑑𝑠𝑡𝑟𝑒𝑎𝑚;(20) 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = SimulateVirtualEnkironment(𝑙𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑡𝑒, 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚);(21) if 𝑟𝑒𝑠𝑢𝑙𝑡𝑠.𝑎𝑟𝑟𝑖V𝑒𝑠𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒 then
(22) 𝑠𝑒𝑛𝑡 = 𝑠𝑒𝑛𝑡 + 1;
(23) end if
(24) if 𝑟𝑒𝑠𝑢𝑙𝑡𝑠.𝑠𝑡𝑜𝑝𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 = 𝑡𝑟𝑢𝑒 ∧ 𝑠𝑡𝑜𝑝 = 𝑓𝑎𝑙𝑠𝑒 then
(25) 𝑠𝑡𝑜𝑝 = 𝑡𝑟𝑢𝑒;
(26) end if
(27) if 𝑟𝑒𝑠𝑢𝑙𝑡𝑠.𝑠𝑡𝑜𝑝𝑠𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒 ∧ 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑓𝑎𝑙𝑠𝑒 then
(28) 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑡𝑟𝑢𝑒;
(29) end if
(30) 𝑙𝑖𝑔ℎ𝑡𝑐ℎ𝑎𝑛𝑔𝑒 = LightGreenChange(𝑙𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑡𝑒);
(31) if 𝑙𝑖𝑔ℎ𝑡𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒 then
(32) 𝜖 = |𝑟𝑒𝑐𝑒𝑖V𝑒𝑑𝑑𝑠𝑡𝑟𝑒𝑎𝑚 − 𝑠𝑒𝑛𝑡|;
(33) 𝑠𝑒𝑛𝑡 = 0;
(34) end if
(35) 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = CountVehiclesVirtualEnkironment();
(36) 𝑝𝑎𝑐𝑘𝑎𝑔𝑒2.𝑛 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠.𝑛 + 𝜖
(37) 𝑝𝑎𝑐𝑘𝑎𝑔𝑒2.𝑚 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠.𝑚
(38) 𝑝𝑎𝑐𝑘𝑎𝑔𝑒2.𝑠𝑡𝑜𝑝 = 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚(39) SendMessageDownstreamCL(𝑝𝑎𝑐𝑘𝑎𝑔𝑒2);(40) 𝑝𝑎𝑐𝑘𝑎𝑔𝑒3.𝑠𝑡𝑜𝑝 = 𝑠𝑡𝑜𝑝
(41) 𝑝𝑎𝑐𝑘𝑎𝑔𝑒3.𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 = 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑
(42) SendMessageUpstreamCL(𝑝𝑎𝑐𝑘𝑎𝑔𝑒3);(43) 𝑝𝑎𝑐𝑘𝑎𝑔𝑒4 = ReceikesMessageUpstreamCL();
(44) if 𝑝𝑎𝑐𝑘𝑎𝑔𝑒4.𝑙𝑖𝑔ℎ𝑡𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒 then
(45) 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 = 0;
(46) end if

Algorithm 1: Deliberative sensors algorithm.

the sensing area, the function IsThereVehicle returns true
when such a condition is satisfied and false otherwise
(line (3)). If there is a virtual vehicle in the position of
the sensing area of the virtual environment, the function
isThereVirtualVehicle returns true when such a condition
is satisfied and false otherwise (line (4)). If a vehicle is
sensed and the virtual vehicle is not registered in the corre-
sponding position of the virtual environment, the function
setVirtualVehicle creates a virtual vehicle in that position

(line (7)). The verification is done to prevent the removal of
a virtual vehicle and add it again in the same position. A case
often occurs when a stationary vehicle in the sensing area is
already registered in that position of the virtual environment.

The function Stationary checks if there is a stationary
vehicle in the sensing area. If such a condition is true, it
returns true and false otherwise (line (9)). If the vehicle
is stationary, the variable 𝑠𝑡𝑜𝑝 is set to true to indicate a
stationary vehicle in the sensing area at the beginning of
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the block. Otherwise, if the vehicle is moving, the variable
𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 is increased by one to indicate that a vehicle is
received in the sensing area (line (13)).

The computer-sensor through the function ReceivesMes-
sageDownstreamCL receives a package from the down-
stream computer-light. The package contains information
regarding the status of the traffic light, whether a vehicle
is stationary, and the number of vehicles received in the
downstream block. Subsequently, the information is set
to the variables 𝑙𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑡𝑒, 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚, and 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑𝑑𝑠𝑡𝑟𝑒𝑎𝑚,
respectively (lines (17)–(19)).

The function SimulateVirtualEnvironment simulates in
the virtual environment the movement of the vehicles (line
(20)):

(i) The movement of each member of the set of virtual-
vehicles-received is simulated depending on the value
of the variable 𝑙𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑡𝑒 (red or green) and the
position of neighboring virtual vehicles. If a virtual
vehicle received goes through a green light and is at
or after the intersection, it becomes part of the set of
virtual-vehicles-sent.

(ii) The movement of each member of the set of virtual-
vehicles-sent is simulated depending on the state vari-
able 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 (true or false) and the position of
neighboring virtual vehicles. The variable 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚
is similar to the traffic lights; if 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 is true
and there are virtual vehicles in the set of virtual-
vehicles-sent, the virtual vehicles cannot advance. If
a virtual vehicle reaches the position of the down-
stream computer-sensor, the virtual vehicle is removed
from the set of virtual-vehicles-sent and the function
SimulateVirtualEnvironment returns a value in the
package 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 to indicate that a virtual vehicle
arrived (line (20)).

If the simulation registers a virtual vehicle that reaches
the downstream computer-sensor on the set of virtual-vehicles-
sent, the computer-sensor increases the value of the variable
𝑠𝑒𝑛𝑡 by one (lines (21)–(23)).

If the simulation registers a virtual stationary vehicle in
the sensing area and the variable 𝑠𝑡𝑜𝑝 has the value false,
then the value of the variable 𝑠𝑡𝑜𝑝 is set in true because the
computer-sensor chooses the possibility that an error sensing
occurred (lines (24)–(26)).

If the virtual simulation registers a virtual stationary
vehicle on the set of virtual-vehicles-sent and the variable
𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 has the value false, then the value of the
variable 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 is set in true because the computer-
sensor selects the possibility that a sensing error occurred in
the downstream computer-sensor to avoid traffic jams at the
intersection (lines (27)–(29)).

It should be mentioned that because the overall simu-
lation runs on an ECA, the virtual environment that runs
the computer-sensor is performed with a local ECA, and
considering a perfect sensor, intuitively it is natural to think
that the simulation is completely deterministic. However, this
is not the case because of the following reasons:

(i) At the beginning of the simulation, the computer-
sensor has no information so it assumes the worst case
and considers that the set of virtual-vehicles-received
is full. In addition, the computer-sensor assumes that
no virtual vehicle has been sent. Therefore, the “real”
traffic state does not correspond to the state of the
local virtual environment of the computer-sensor and
the algorithmmust implement amechanism to rectify
the situation.

(ii) When a computer-sensor receives a green light, it
assumes that the vehicles have started moving. How-
ever, in the global simulation, if a vehicle has a green
light but there is another vehicle in the transversal
direction occupying the intersection, then the vehicle
does not advance and the prediction in the virtual
environment will be out of phase.Thus, the algorithm
should also rectify this situation.

(iii) The sensors may have errors, and consequently some
vehicles may not be detected.

The function GreenLightChange determines if the light
of the downstream traffic light turned green and when the
condition is true the absolute difference between the number
of vehicles received by the downstream block and the number
of virtual vehicles sent is calculated. Such a difference is
set to the variable 𝜖 (line (32)). If the numbers of vehicles
in 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑𝑑𝑠𝑡𝑟𝑒𝑎𝑚 and number of virtual vehicles sent are
equal, then the value of the variable 𝜖 is set to zero because
the numbers predicted between vehicles received by the
downstream computer-sensor and virtual vehicles sent by the
computer-sensormatch. On the other hand, prediction errors
occur if the numbers of vehicles received and the virtual
vehicles sent do not match, the value of 𝜖 is nonzero, and the
value of the variable 𝑠𝑒𝑛𝑡 is set to zero (lines (32)-(33)).

The functionCountVehiclesVirtualEnvironment counts
the number of virtual vehicles that are received at distance 𝑑
and distance 𝑟 from the position of the intersection and set
to variables 𝑛 and 𝑚 of the data structure 𝑟𝑒𝑠𝑢𝑙𝑡𝑠. The data
structure 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 is the value returned by the function (line
(35)). Subsequently, a package is created with the data 𝑛 set to
𝑛 + 𝜖,𝑚 set to𝑚, and 𝑠𝑡𝑜𝑝 set to 𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚 (lines (36)–(38)).
The package is sent by the function SendMessageDown-
streamCL to downstream computer-light (line (39)). The
downstream computer-light with the information contained
in the package applies the method of self-organizing traffic
lights.

The number of virtual vehicles received at distance 𝑑 and
distance 𝑟 is increased with 𝜖 to adjust the gap between the
number of vehicles received by the downstream block and
virtual vehicles sent. The increase in the number of virtual
vehicles received gives priority to the block for mitigating
two undesirable situations: (1) when the number of virtual
vehicles sent is lower than the vehicles received, it is inferred
that the missing vehicles are still in the previous block; (2)
when the number of virtual vehicles sent is greater than the
vehicles received, it is inferred that there are excess vehicles
in the previous block.

The computer-sensor through the function SendMes-
sageUpstreamCL sends a package with the values of the
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Figure 8: The reactive and deliberative self-organizing methods achieve good performance for all densities compared to the green wave
method. Both self-organizing methods are close to the optimality curves (see (6)).

variables 𝑠𝑡𝑜𝑝 and 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 to the upstream computer-light
(lines (40)–(42)). The package contains information regard-
ing whether a vehicle is stationary and the number of vehicles
received on the block of computer-sensor.

Finally, the computer-sensor through the function
ReceivesMessageUpstreamCL receives a package of
upstream computer-light to report that the light of the
upstream traffic light turned green and set the value of the
variable 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 to zero (lines (43)–(46)).

A system in the city of Duisburg has been developed with
the purpose of predicting the state of the traffic by online
simulation of virtual vehicles with cellular automata [26, 27].
Like our approach with deliberative traffic lights, in the Duis-
burg system, it is necessary to place sensors (inductive cycles)
on the roads to detect the presence of the vehicles. However,
unlike deliberative traffic lights, the Duisburg system has a
centralized approach because one computer collects all the
information obtained by the sensors and another computer
executes the simulation on a global level. Our approach with
deliberative traffic lights, by contrast, is distributed because
each computer-sensor collects the information and simulates
the corresponding traffic only in its block, that is, at the local
level. Deliberative traffic lights have the advantage that if a
computer-sensor fails, it does not imply that the entire system
collapses, which does occur in the Duisburg system when the
computer that collects the information from the sensors or
the computer that performs the simulation fails.

In addition, the online simulation of the Duisburg system
aims to plan routes according to the state of the predicted
trafficwhichwill be sent to the driver.On the other hand,with
the deliberative traffic lights, the simulation of each computer-
sensor has the objective of managing the traffic light.

5. Results

To test the green wave and the reactive and deliberative self-
organizing traffic lights methods, we constructed a hundred-
by-hundred homogeneous street grid with alternating flow
directions and cyclic boundaries. In our green wave method,
the cycle 𝑇 = 85. The length of each street is 1,700 cells, that
is, 8,500 meters (each cell is five meters). Every block has
a distance of 16 cells (without the intersection). Thus, there
are 80 simulated meters between streets (similar to streets
in Manhattan). In the grid there are 330,000 cells, 10,000
intersections, and 200 streets (50 in each cardinal direction).
It is worth mentioning that Manhattan has approximately
3,360 intersections, so the simulated city is about three times
the size of Manhattan.

The experiments consist in running the simulation with
50 different densities for the green- and the reactive and
deliberative self-organizing methods. For each density, ten
runs were executed and the results were averaged. Each run
consisted of the following: there is an initial state where
vehicles are placed randomly and homogeneously. Then,
half an hour (5,400 ticks) is simulated. After these initial
5,400 ticks, the system is considered to have stabilized, that is,
gone through a transient, so another half hour is simulated,
where the velocity is measured at every tick. At the end of the
simulation, the velocities of the second half hour are averaged
to obtain the average velocity V and average flow 𝐽.The results
are shown in Figure 8.

Table 1 shows the values of the parameters used by the
self-organizing methods, as proposed in [4].

The simulator with which we performed our experiments
was developed in the C language. The reader is invited
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Table 1: Parameters used by the self-organizing method [4]. The size of each block is 80meters.

Variable Abstract value Scaled value Description
Δ𝑡 1 tick 1/3 s Time step in the simulation.
𝑑 10 cells 50m Distance where the vehicles are detected approaching the intersection.
𝑟 5 cells 25m Short distance where the vehicles are detected approaching the intersection.
𝑒 3 cells 15m Distance where stationary vehicles are detected.
𝑢 10 ticks 3.33 s Minimum waiting time behind a red light.
𝑤 600 ticks 200 s Maximum waiting time behind a red light.
𝑛 40 veh⋅ticks 13.33 veh⋅s Accumulated number of vehicles at distance 𝑑.
𝑚 2 vehicles 2 vehicles Number of vehicles at distance 𝑟.

to access the code at https://github.com/Zapotecatl/Traffic-
Light.

In the greenwavemethod, we found the following phases:

(i) The intermittent phase is between 𝜌 > 0 and 𝜌 ⪅ 0.22.
At this phase, some vehicles are stationary behind a
red light. The phase transition lies at 𝜌 ≈ 0.22, where
there is a maximum flow of 𝐽 ≈ 0.17 (see Figure 8).

(ii) The gridlock phase is presented for densities 𝜌 ⪆
0.22; vehicles flowing on streets with green wave
(southbound and eastbound) cannot keep the velocity
of the green wave, so traffic jamsmove in the opposite
direction of the flow. The queues of vehicles and
platoons groups waiting behind a red light grow
in opposite directions of the green wave and block
intersections. Consequently, gridlocks occur (see Fig-
ure 8).

For the reactive and deliberative self-organizingmethods,
we found the following phases:

(i) The free-flow phase is presented only for very lowden-
sities in the reactive and deliberative self-organizing
methods in 0 < 𝜌 ⪅ 0.000006, where V = 1 and no
vehicle has to stop. It should be noted that this phase
almost disappeared because of the introduction of a
maximum time 𝑤 in rule 2. Nevertheless, this phase
does not exist in realistic scenarios, as it requires
periodic boundaries and no turning vehicles.

(ii) The quasi-free-flow phase is presented in the reac-
tive and deliberative self-organizing method in
0.000006 < 𝜌 ⪅ 0.12, where few vehicles stop for
little time. Most intersections have only one platoon
requesting a green light, so this one is able to flow
without having to stop, unless another platoon is
crossing at the same time.

(iii) The intermittent underutilized phase is presented in
the reactive and deliberative self-organizing method
between 𝜌 ≈ 0.12 and 𝜌 ≈ 0.22, where intersections
are idling some of the time; that is, no vehicle uses
them.The difference with the quasi-free-flow phase is
that in the underutilized intermittent phase there are
two platoons requesting a green light in most of the
cases. Thus, one platoon has to wait until the other
one crosses.

(iv) The quasi-full capacity intermittent phase is presented
in the reactive and deliberative self-organizing meth-
ods between 𝜌 ≈ 0.22 and 𝜌 ≈ 0.4. There are
always two platoons requesting a green light; however,
there is a certain probability that the platoons are of
different sizes. The smallest platoons generate lower
demand and lead to idle intersections.

(v) The full capacity intermittent phase is presented in
the reactive and deliberative self-organizing method
between 𝜌 ≈ 0.4 and 𝜌 ≈ 0.68 with a maximum
flow 𝐽 ≈ 0.257. This implies that the intersections
are being used at full capacity. In the full capacity
intermittent phase there are no resources “lost” of
free space because the intersections are being used
constantly; that is, there are always vehicles crossing
all intersections.

(vi) The overutilized intermittent phase is presented in
the reactive and deliberative self-organizing methods
between 𝜌 ≈ 0.68 and 𝜌 ≈ 0.8, where the density
is such that rule 6 sometimes forces both directions
to stop, thus reducing the flow of the intersections.
This phase is similar to the underutilized intermittent
phase in the sense that the intersections cannot be
used at their full flow capacity. In the underutilized
intermittent case, this is because there are no enough
vehicles. In the overutilized intermittent case, by
contrast, this is because there are too many vehicles
and intersections need to wait before one street can
get a green light.

(vii) The quasi-gridlock phase is presented in the reactive
and deliberative self-organizing methods between
𝜌 ≈ 0.8 and 𝜌 < 1.0. Most vehicles are stationary,
but free spaces move in the direction opposite of the
vehicles between traffic jams at a velocity of one cell
per tick.

(viii) The gridlock phase is presented for high densities in
the reactive and deliberative self-organizing method
in 𝜌 = 1.0; that is, V = 0. The vehicles cannot move
because the density is too high and intersections are
blocked from initial conditions.

5.1. Errors on Sensors. Each sensor has associated a proba-
bility 𝑃 that represents the precision to detect vehicles, for
example, if 𝑃 = 0.9 sensor will detect 90% of vehicles. This

https://github.com/Zapotecatl/Traffic-Light
https://github.com/Zapotecatl/Traffic-Light
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Figure 9: Flow-density diagrams for different error rates. 𝑃 represents the accuracy of the sensor.

probability of precision is implemented within the function
IsThereVehicle. Therefore, in the reactive self-organizing
method, the function IsThereVehicle is called to verify the 𝑘
cells contained within the sensing zone between the distances
𝑑 and 𝑒. Moreover, in the case of deliberative self-organizing
method, the function IsThereVehicle is called once because
the sensing area is only formed by a cell. In addition, at the
time a vehicle is no longer detected by the sensor, the vehicle
will remain imperceptible throughout its entire trajectory in
the sensing area.

The experiment consists in executing the simulation with
six different degrees of sensor precision𝑃, 1.0, 0.9, 0.8, 0.7, 0.6,
and 0.5, to evaluate the robustness of reactive and deliberative
self-organizing methods against errors sensing.

The configuration used for each run is the same as
the experiments of the previous section to evaluate the
performance of the three methods to control traffic lights.
The results of the self-organizing reactive approach compared
to the self-organizing deliberative method are shown in
Figure 9.

The simulation results with sensors to different levels of
precision show that the deliberative self-organizing approach
is more robust to sensing errors. This is because the delib-
erative method maintains the state of the environment in
memory and sensing error only affects a cell. On the other
hand, in the traditional approach, the state of the system is not
maintained and the error is distributed in all cells because it is
inherent in the sensing area. Therefore, the reactive method
has no way to recover and requires a high degree of precision
of the sensor because even when the precision of sensor is
90%, the flow collapses.

6. Discussion

In our green wave method, the cycle 𝑇 controls the synchro-
nization of the traffic light with the travel time of vehicles
around the torus. This synchronization is achieved in our
model if the street length is a multiple of 𝑇, a condition for
free-flow. Otherwise, the cycle of the traffic light and the
travel time of the vehicles are out of synchrony.Thus, vehicles
need to wait for a green light and the average velocity is less
than one.We contrast the green wave method using the same
settings in section 5 (Results) applying a global cycle 𝑇 = 85
with the green wave method applying a local cycle 𝑇𝑖 at each
traffic light set in a random value in the range of [2, 𝑇]. The
lower limit of the range is 2 so as to give at least one time step
for the green light and one time step for the red light. When
the value of 𝑇 is not the same for all traffic lights, there is no
coordination between traffic lights and the flow is reduced
because the movement of the vehicles is interfered by red
lights (see Figure 10).

Our deliberative self-organizing algorithm bases its per-
formance on the precision of the computer-sensor to detect
and predict the movement of the vehicles in its block.
However, if our ACE model allows vehicles to turn, the
computer-sensor receives information from another block, a
situation for which the deliberative self-organizing algorithm
is not designed. In addition, when a vehicle tries to turn
to enter a transverse street that is saturated, the flow stops
because the vehicle obstructs the intersection and there is
only one lane. The flow is not released until there is a space
in the street where the vehicle is trying to enter or the vehicle
decides to continue in the same direction in which it was.
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Figure 10: Flow-density and velocity-density diagrams for green wave with the same global cycle 𝑇 and a local cycle in the range of [2, 𝑇].
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Figure 11: Flow-density and velocity-density diagrams for different probabilities of turn in the reactive and deliberative algorithm.

Approximately 20% of the vehicles turn into important
avenues. However, the percentage is different depending on
the topology of each city. In order to explore the effects
produced in the reactive and deliberative self-organizing
algorithm with the previously mentioned situations, we
did an experiment consisting in varying the probability
that a vehicle decides to turn at an intersection at 𝑝 =
{0.0, 0.1, 0.2, 0.3} (see Figure 11). The case with 𝑝 = 0 is

relevant for its quasi symmetry and for the identification
of phase transitions. A greater probability will cause more
vehicles to attempt to enter other transversal streets, but there
will also be a greater probability that such vehicles will again
decide to change direction and continue their travel in the
direction in which they were.

Figure 11 shows that the flow decreases in the deliberative
and reactive self-organizing algorithm when vehicles turn.
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When the density is increased, the possibility that a vehicle
tries to enter a transverse street that is saturated is greater and
therefore the flow is reduced.

Although our deliberative self-organizing algorithm was
designed with the restriction that vehicles can only go in one
direction, when vehicles are allowed to turn, the algorithm
shows a similar performance to that of the reactive self-
organizing algorithm. A future extension to our deliberative
self-organizing algorithm is to delegate to the computer-light
the responsibility of applying or not applying the compen-
sation (through epsilon) to mitigate the prediction errors.
For example, if an intersection has horizontal downstream
computer-light with a missing vehicle but in the vertical
downstream computer-light there is a surplus vehicle, the
computer-light infers that a vehicle turns and would not apply
compensations.

Our experiments with errors on sensors show that a
convenient strategy when sensors fail more than 10% is that
the traffic lights apply the green wave method because it has
a better performance in that case.

7. Conclusions

All major cities suffer from traffic jams. Technological
improvements such as the one presented here can increase
the capacity of urban infrastructure. However, if it becomes
very efficient to travel by private vehicle, more people will
be inclined to do so, increasing density and eventually
decreasing traffic flow. This means that improvements to
traffic infrastructure can actually generate a worse situation
than the one they are trying to solve [28, 29]. For this reason,
an integrated transportation plan is required to balance the
demands and improvements over all transportation modes.

Our city traffic model [13] is more useful for descriptive
than predictive purposes. Its vehicle-space duality (both
occupy the same space) yields symmetry in the flow opti-
mality curves. Its simplicity allows the clear identification
of phase transitions. We have also worked with realistic city
traffic models [30, 31], obtaining similar results. We are in
the process of developing a more realistic city traffic model
to bridge both lines of research.

It is clear that adaptive algorithms will outperform tra-
ditional static methods [32], as it was shown here. It is also
important to develop robust methods, and the deliberative
sensors achieve a considerable improvement over sophisti-
cated sensors. In the performed experiments, 30% failure rate
of the deliberative sensors performed better than 10% failure
rate with sophisticated sensors.

Sophisticated sensors could be improved to increase their
robustness, for example, adding more cameras or processing,
but this would increase their cost even more. As sensor
technology evolves, probably it will be common to deploy
robust and cheap sensors in cities in the near future. There
might be other ways to increase the robustness of this
approach, but its exploration is beyond the scope of this work.

Considering the recent progressmade in the development
of autonomous vehicles [33, 34], decentralized algorithms
such as the ones presented here will be useful in the coor-
dination of autonomous vehicles at intersections as well.

Notations

𝑙𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑡𝑒: If the value is set to true, the traffic light
is green. Otherwise, the light is red

𝑠𝑒𝑛𝑡: Number of vehicles sent to the
downstream block

𝑟𝑒𝑐𝑒𝑖V𝑒𝑑: Number of vehicles received
𝑠𝑡𝑜𝑝: If the value is set to true, a stationary

vehicle is in the sensing area
𝑟𝑒𝑐𝑒𝑖V𝑒𝑑𝑑𝑠𝑡𝑟𝑒𝑎𝑚: Number of vehicles received in the

downstream block
𝑠𝑡𝑜𝑝𝑑𝑠𝑡𝑟𝑒𝑎𝑚: If the value is set to true, there is a

stationary vehicle in the sensing area of
downstream block

𝜖: Absolute difference between the number
of vehicles received and virtual vehicles
sent on the downstream block.
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