
Artificial Intelligence 211 (2014) 51–74
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

CTL update of Kripke models through protections ✩

Miguel Carrillo, David A. Rosenblueth ∗

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apdo. 20-126,
01000 México D.F., México

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 September 2012
Received in revised form 24 February 2014
Accepted 24 February 2014
Available online 2 March 2014

Keywords:
CTL model update
Model checking
Automatic synthesis

We present a nondeterministic, recursive algorithm for updating a Kripke model so as to
satisfy a given formula of computation-tree logic (CTL). Recursive algorithms for model
update face two dual difficulties: (1) Removing transitions from a Kripke model to satisfy
a universal subformula may dissatisfy some existential subformulas. Conversely, (2) adding
transitions to satisfy an existential subformula may dissatisfy some universal subformulas.
To overcome these difficulties, we employ protections of the form 〈E, A, L〉, recording
information about the satisfaction of subformulas previously treated by the algorithm.
Intuitively, (1) E is the set of transitions that we cannot remove without compromising the
satisfaction of previously treated subformulas. Conversely, (2) A is the set of transitions
that we can add. Hence, update proceeds without diminishing E and without augmenting
A. Finally, (3) L is a set of literals protecting the model labels. We illustrate our algorithm
through several examples: Emerson and Clarke’s mutual-exclusion problem, Clarke et.
al.’s microwave-oven example, synchronous counters, and randomly generated models and
formulas. In addition, we compare our method with other update approaches for either
CTL or fragments of CTL. Lastly, we provide proofs of soundness and completeness and a
complexity analysis.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

A computation-tree logic (CTL) model checker is an automated tool that usually has as input (1) a Kripke model M
formalizing a system, (2) a CTL formula ϕ expressing a desirable property of this system, and (3) a set of initial states. The
output is either a confirmation or a denial that M satisfies ϕ at all initial states, meaning that the system respectively has,
or does not have, the required property.1 In case of denial, model checkers often produce a counterexample, consisting of an
error trace. This counterexample is intended as a guide for manually updating or repairing M, or a high-level description
of M, so that the unsatisfied property is fulfilled. We believe that even a partial automation of such a repairing process
could have a significant impact on the use of the model checking technique. Besides, the problem of model update is closely
related to that of reasoning about actions and change (e.g., [14]). Model update is therefore an important subject in Artificial
Intelligence, namely that of modifying transition systems.

✩ This article extends a version presented at ATVA 2011 [5] with soundness and completeness proofs, complexity analysis, benchmarks on larger models,
and a comparison with related approaches.

* Corresponding author.
E-mail addresses: miguel.mcb@gmail.com (M. Carrillo), drosenbl@unam.mx (D.A. Rosenblueth).

1 The CTL model checking problem is sometimes also defined as the problem of computing the set of all states s such that M satisfies ϕ at s.
http://dx.doi.org/10.1016/j.artint.2014.02.005
0004-3702/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).

http://dx.doi.org/10.1016/j.artint.2014.02.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:miguel.mcb@gmail.com
mailto:drosenbl@unam.mx
http://dx.doi.org/10.1016/j.artint.2014.02.005
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2014.02.005&domain=pdf

52 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
In spite of its relevance, the problem of mechanically updating a Kripke model has been little studied. As far as we
know, Buccafurri et al. [1] proposed the first work on CTL model update: an updater for repairing, through abduction,
Kripke models with the addition and removal of transitions. In a later work, Calzone et al. [3] gave a method for updating
Kripke models with the addition and removal not only of transitions, but of labels as well, dependent on biases determined
by the application domain (biochemical networks). More recently, Zhang and Ding [22] have devised a repair algorithm
producing “admissible” models.

Model update methods based on counterexamples produced by a model checker have a drawback. Model repair focused
on invalidating one particular counterexample to a universal property does not guarantee that the repaired model satisfies
this property, because there may be more than one counterexample, and all counterexamples must be treated simultane-
ously. Furthermore, if the defective model does not satisfy an existential property, the model checker does not provide a
useful counterexample, because all traces are counterexamples. Hence, this drawback invites us to consider a method based
on a concept other than counterexamples.

We present a recursive method for repairing models in a nondeterministic way, based on the preservation of the sat-
isfaction of subformulas via a mechanism of “protections”. To update a model with respect to a formula ϕ , our method
recursively updates the model to satisfy the subformulas of ϕ . Every time our method updates a model to satisfy a subfor-
mula α, the satisfaction of α is protected. This protection ensures that if α is a proper subformula of β , then an update to
satisfy β causes no loss of the satisfaction of α achieved by a previous update. To facilitate the treatment of negation, our
algorithm requires that CTL formulas be in negation normal form and written with a set of operators closed under duality.

A previous version [5] of this article showed the behavior of a software tool implementing our algorithm using Emerson
and Clarke’s mutual-exclusion problem [15]. We have now extended that study to include more examples: Clarke et al.’s
microwave-oven model [11] illustrating a specification, a scalable counter exhibiting larger models, and randomly generated
models and formulas also showing larger models. In addition, [5] only outlined soundness and completeness proofs of our
method, whereas we now give more detailed proofs, and perform a complexity analysis of our algorithm. Finally, the cursory
comparison with two methods in [5] has now been detailed and extended to more approaches for either CTL or fragments
of CTL.

In another previous work [4], we extended a former version of the method presented here so as to modify a concise
representation of a Kripke model instead of the Kripke model itself. The former version, however, employed a more primitive
form of universal protection (covered in Section 6). This kind of protection, unlike the one used here, is unsatisfactory
because it is unclear if the resulting algorithm is complete.

After fixing the notation in Section 2, we treat CTL model update in Section 3. Next, we devote Section 4 to nondeter-
minism elimination. Examples illustrating the behavior of a software tool implementing our algorithm appear in Section 5;
comparisons with other approaches occur in Section 6. Section 7 gives a summary and outlines possible future directions
for research. The soundness and completeness proofs are in Appendix A; the complexity analysis is in Appendix B.

2. Technical preliminaries

This section gives introductory definitions and fixes the notation. We assume some familiarity with CTL model checking
and refer the reader to [11] for a more thorough treatment.

A signature Σ = 〈S, V 〉 consists of a pair of nonempty finite sets. We call the elements of S and V , states, and
(propositional) variables, respectively. Unless otherwise stated, we assume that Σ = 〈S, V 〉 is an arbitrary fixed signature. If
E = 〈c1, . . . , cn〉, cEi is the i-th component of E . The set of literals over V Σ is Lit(V Σ) = V Σ ∪ {¬p | p ∈ V Σ }. The complement

of literals is defined by p = ¬p and ¬p = p, ∀p ∈ V Σ . If X ⊆ Lit(V Σ) then: X = {� | � ∈ X}; X is consistent if ∀� ∈ X, � /∈ X ;
and X is V Σ -maximal if for all p ∈ V Σ , p ∈ X or ¬p ∈ X . If R ⊆ SΣ × SΣ then R is total if ∀s ∈ SΣ , ∃t ∈ SΣ such that
(s, t) ∈ R . The set of successors of s under R is R[s] = {t | (s, t) ∈ R}. If A ∩ B = ∅, f : A → C , and g : B → D , f ∪g is the
function f ∪g : A ∪ B → C ∪ D such that f ∪g(t) = f (t) if t ∈ A and f ∪g(t) = g(t) if t ∈ B . We use I D to denote the identity
on D , and C D to denote a constant function such that ∀t ∈ D, C D(t) = C . To denote the symmetric difference of C and D ,
we use �(C, D).

Definition 2.1 (Kripke Σ-models). We say that M = 〈S, R, L〉 is a Kripke Σ-model if S = SΣ , R ⊆ S2 is total, and L : S →
P(Lit(V Σ)) is such that for all t ∈ S , L(t) is consistent and V Σ -maximal.

If (s, t) ∈ R we call (s, t) a transition from s to t and we abbreviate this to sRt . We call L the labeling function of M. If
� ∈ Lit(V Σ) and s ∈ S , then L[s ⊕ �] denotes the labeling function such that L[s ⊕ �](s) = (L(s) ∪ {�}) − {�} and L[s ⊕ �](t) =
L(t) for t �= s. KΣ denotes the set of Σ-models.

We define the distance between M and M′ ∈ KΣ , as d(M,M′) = |�(SM, SM
′
)|+ |�(RM, RM′

)|+∑
t∈SM (|�(LM(t),

LM
′
(t))|/2). It can be proved that d is a metric on KΣ .

Models are often represented graphically as in Section 5, writing only positive literals as labels of the states.
Next, we define an extension of CTL. We use a base of operators closed under duality with the following pairs of dual

operators: (F,T), (∨,∧), (EX,AX), (EU,AR), and (AU,ER). We restrict formulas to a negation normal form (NNF), by limiting
the application of negation to variables. However, since we use a base of operators closed under duality, other instances of

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 53
negation may be considered as shorthand. We add to CTL out-degree formulas OD� n, and their duals OD> n, to limit the
number of transitions going out of a state.

Definition 2.2 (Σ-CTL and Σ-XCTL). Formulas of computation-tree logic of signature Σ , Σ-CTL (abbreviated Φ), have the follow-
ing syntax:

Φ ::= F | T | � | (Φ ∨ Φ) | (Φ ∧ Φ) | (EXΦ) | (AX Φ) | OD� n | OD> n

| E[Φ U Φ] | A[Φ U Φ] | E[Φ R Φ] | A[Φ R Φ]
where � stands for any literal in Lit(V Σ) and 0 < n � |SΣ |.

We will single out the modal fragment of Σ-CTL. Σ-XCTL formulas (abbreviated Ψ) have the following syntax:

Ψ ::= F | T | � | (Ψ ∨ Ψ) | (Ψ ∧ Ψ) | (EXΨ) | (AX Ψ) | OD� n | OD> n

We use ϕ ∈ Σ-CTL to indicate that ϕ is a Σ-CTL formula. The size of ϕ ∈ Σ-CTL, written |ϕ|, is defined by |F| = |T| = 0,
|�| = |OD� n| = |OD> n| = 1, |EXα| = |AXα| = |α| + 1, and |α ∨ β| = |α ∧ β| = |E[α U β]| = |A[α U β]| = |E[α R β]| =
|A[α R β]| = |α| + |β| + 1.

If ϕ is built from atomic formulas (F, T, or �) by using ∨ or ∧, we say that ϕ is propositional; otherwise we say that ϕ is
a non-propositional formula. We view other propositional operators (→, ↔, exclusive or �) and temporal operators (EF, AF,
EG, AG) as abbreviations: EFα = E[T U α], AFα = A[T U α], EGα = E[F R α], AGα = A[F R α].

The above CTL syntax is a key point in the simplicity of our model update algorithm. Any syntax that has a base of
operators similar to those used in model checking [11], e.g., {¬,∧,EX,AF,EU}, complicates model update w.r.t. formulas
¬α, AFα, and E[α U β]. Another key point is that our algorithm focuses on Σ-XCTL formulas, and deals with path operators
(EU, AU, ER, and AR) through their fixed-point characterizations [11].

Next, we provide basic definitions for the protection mechanism.

Definition 2.3 (Σ-Protections). P = 〈E, A, L〉 is a Σ-protection if:

1. E ⊆ A ⊆ SΣ × SΣ , and
2. L : SΣ →P(Lit(V Σ)) is such that ∀t ∈ SΣ , L(t) is consistent.

Protections are the main key point of our update algorithm. Intuitively, a protection P = 〈E, A, L〉 records information
about the satisfaction of previously treated subformulas by our algorithm. In P , E is the set of transitions (s, t) such that
(s, t) cannot be removed without compromising the satisfaction of previously treated subformulas. Analogously, A is the
set of transitions (s, t) such that (s, t) can be added. Finally, L is the set of literals � such that � cannot be changed to �̄

without compromising the satisfaction of previously treated subformulas. Transitions related to the satisfaction of universal
(existential) subformulas are recorded in A (E). Thus, to preserve the satisfaction of previously treated subformulas, we
proceed without diminishing E or augmenting A, and without complementing literals in L.

We refer to states in E[s] (A[s]) as the existentially (universally) protected successors of s. We will use PΣ to denote the
set of Σ-protections.

Definition 2.4 (Protected models, PM, and P⊥). Let M ∈ KΣ and P ∈ PΣ . We say that M is protected by P , and we write
M� P if:

1. E P ⊆ RM ⊆ A P , and
2. ∀t ∈ SM: LM(t) ⊇ L P (t).

We say that (M, P) is a protected Σ-model if M � P , and we use KPΣ to denote the set of protected Σ-models. The full
Σ-protection of M is PM = 〈RM, RM, LM〉. The empty Σ-protection is P⊥ = 〈∅, SΣ × SΣ, L⊥〉, where L⊥(s) = ∅ for all
s ∈ SΣ .

If R ⊆ S2 and s ∈ S , a path in R beginning at s, is a sequence π : N → S , such that π(0) = s and ∀n ∈ N, π(n)Rπ(n + 1).
We write πn instead of π(n) and we use ΠR,s to denote the set of paths in R beginning at s.

Definition 2.5 (Σ-CTL protected semantics). If (M, P) ∈ KPΣ is a protected Σ-model, s ∈ SM and ϕ ∈ Σ-CTL, then we say
that (M, P) satisfies ϕ at s, and we write (M, P), s |� ϕ , if:

1. (M, P), s �|� F. (M, P), s |� T. (M, P), s |� � if � ∈ L P (s).
2. (M, P), s |� α ∨ β if (M, P), s |� α or (M, P), s |� β .
3. (M, P), s |� α ∧ β if (M, P), s |� α and (M, P), s |� β .

54 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
4. (M, P), s |� EXα if ∃t ∈ E P [s] such that (M, P), t |� α.
5. (M, P), s |� AXα if ∀t ∈ A P [s], (M, P), t |� α.
6. (M, P), s |� E[α U β] if ∃π ∈ ΠE P ,s , and ∃ j ∈N such that

(M, P),π j |� β and ∀i ∈N, i < j → (M, P),πi |� α.
7. (M, P), s |� A[α U β] if ∀π ∈ ΠA P ,s , ∃ j ∈ N such that

(M, P),π j |� β and ∀i ∈N, i < j → (M, P),πi |� α.
8. (M, P), s |� E[α R β] if ∃π ∈ ΠE P ,s such that either

(a) ∀k ∈N, (M, P),πk |� β , or
(b) ∃ j ∈N. (M, P),π j |� α and ∀i ∈N, i � j → (M, P),πi |� β .

9. (M, P), s |� A[α R β] if ∀π ∈ ΠA P ,s , either
(a) ∀k ∈N, (M, P),πk |� β , or
(b) ∃ j ∈N. (M, P),π j |� α and ∀i ∈N, i � j → (M, P),πi |� β .

10. (M, P), s |� OD� n if |A P [s]| � n.
11. (M, P), s |� OD> n if |E P [s]| > n.

Definition 2.6 (Σ-CTL semantics). If M is a Σ-model, s ∈ SM and ϕ ∈ Σ-CTL, we say that M satisfies ϕ at s, M, s |� ϕ , if
(M, PM), s |� ϕ .

We extend Σ-CTL protected semantics to sets of states and sets of formulas. If S ⊆ SM then (M, P), S |� ϕ if for all
s ∈ S , (M, P), s |� ϕ . If Γ ⊆ Σ-CTL then (M, P), s |� Γ if for all ϕ ∈ Γ , (M, P), s |� ϕ . If ϕ1,ϕ2 are two Σ-CTL formulas,
we say that ϕ1 and ϕ2 are logically equivalent, and we write ϕ1 ≡ ϕ2, if for all M ∈ KΣ and all s ∈ SM: M, s |� ϕ1 if
M, s |� ϕ2.

In Section 5, we use the equivalence AGα ∧ AGβ ≡ AG(α ∧ β) to factor conjunctions of AG formulas. Our algorithm uses
the following equivalences, known as fixed-point characterizations, to recursively compute a model update in the respective
cases:

E[α U β] ≡ β ∨ (
α ∧ EX E[α U β])

A[α U β] ≡ β ∨ (
α ∧ AX A[α U β])

E[α R β] ≡ β ∧ (
α ∨ EX E[α R β])

A[α R β] ≡ β ∧ (
α ∨ AX A[α R β])

A model update w.r.t. EU and AU formulas can be computed with a least fixed-point (lfp) operator, while a model update
w.r.t. ER and AR can be computed with a greatest fixed-point (gfp) operator [11, p. 63].

3. CTL update algorithms

In this section, we describe an algorithm that uses protected models for model update w.r.t. Σ-CTL formulas. After a
brief explanation of the pseudo-code notational conventions and basic update operations, we describe two model-update
algorithms for Σ-XCTL formulas. The first one is a direct algorithm that we include here for the purpose of emphasizing
the main features of the model-update problem. The second one implements our method for model update using protected
models. Finally, we describe how to extend our method to all formulas in Σ-CTL, and how to add states to the signature Σ

if the input formula is not satisfiable by any Σ-model. Appendix A includes a proof of the correctness and completeness of
XUpdprot , and Appendix B provides a complexity analysis of Updprot .

3.1. Nondeterministic pseudo-code

We use a nondeterministic pseudo-code. Besides usual control statements and procedures, our pseudo-code has the fol-
lowing commands.

Given a finite multiset A, the command “guess x ∈ A” computes a nondeterministic choice of an element u from A
and assigns u to x; if A = ∅, the computation fails. The command “x ← e” is a nondeterministic assignment equivalent to
“guess x ∈ Ae”, where Ae is the multiset of values produced by the nondeterministic computation of e.

We say that P is a nondeterministic procedure if P is a procedure and there is some occurrence of guess in the commands
defining P . If P is a nondeterministic procedure, and P (a1, . . . ,an) is a call to P with arguments a1, . . . ,an , the computation
of P (a1, . . . ,an) consists of a set of execution paths. Each occurrence of a command guess x ∈ A allows to continue a
computation on different execution paths, one path for each element of A.

We use two commands to indicate the end of an execution path in a nondeterministic procedure P . “return r” halts the
execution and, as one of the results computed by P , returns r. “fail” halts the execution without returning any result.

Execution paths ending with return are successful paths, and those ending with fail are unsuccessful paths. The multiset of
results computed by P (a1, . . . ,an), is denoted by P [a1, . . . ,an]. Thus, P [a1, . . . ,an] = ∅ means that, for the given arguments,
all execution paths of P are unsuccessful; in this case we say that P fails.

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 55
XUpd1(M, s,ϕ) % Update M at s w.r.t. ϕ
INPUT: M ∈ KΣ , s ∈ SM , ϕ ∈ Σ-XCTL
OUTPUT: Modif (M, s,ϕ)

1 case ϕ of
2 F : fail
3 T : M′ ← M
4 � : M′ ← Lu(M, s, �)
5 α ∨ β : {guess δ ∈ {α,β}; M′ ← XUpd1(M, s, δ)}
6 α ∧ β : {Mα ← XUpd1(M, s,α); M′ ← XUpd1(Mα, s, β)}
7 EXα : {guess s′ ∈ SM; M′ ← XUpd1(T+(M, s, s′), s′,α)}

8 AXα : {guess S ′ ∈ 2SM − {∅};
9 M′ ← XUpd

∗
1(Tu(M, s, S ′), S ′,α)}

10 OD� n : {guess S ′ ∈ {X ∈ 2SM − {∅} | |X | � n};
11 M′ ← Tu(M, s, S ′)} % for � ∈ {�,>}
12 if M′, s |� ϕ then return M′ else fail

Fig. 1. XUpd1.

3.2. Modification of models

We build our algorithm for model update by using a few basic operations to gradually change the input model.

Definition 3.1 (Update operations). Let M ∈ KΣ , s, s′ ∈ SM , � ∈ Lit(V Σ), S ′ ⊆ SM , and S ′′ �= ∅ a finite set, such that S ′ �= ∅
and S ′′ ∩ SM = ∅. The update operations on Kripke models are:

1. Lu(M, s, �) = 〈SM, RM, LM[s ⊕ �]〉. Add � to LM(s), and remove �.
2. T+(M, s, s′) = 〈SM, RM ∪ {(s, s′)}, LM〉. Add (s, s′) to RM .
3. Tu(M, s, S ′) = 〈SM, (RM − ({s} × RM[s])) ∪ ({s} × S ′), LM〉. Replace the successors of s, RM[s], by S ′ .
4. S+(M, S ′′) = 〈SM ∪ S ′′, RM ∪ I S ′′ , LM ∪ V S ′′ 〉. Add S ′′ to SM , add I S ′′ to RM , and label all t ∈ S ′′ with V .

Successive applications of the operations Lu , T+ , and Tu are sufficient to transform a given Σ-model into any other
Σ-model. Besides, these operations are instrumental to achieve that a modification of a model satisfies literals, EX formulas,
and AX formulas, respectively. Note that S+(M, S ′′) is not a model over Σ , i.e., S+(M, S ′′) /∈ KΣ .

Below, we give a precise definition of what we regard as an acceptable modification of a model M w.r.t. a formula ϕ .

Definition 3.2 (Modifications of M w.r.t. ϕ). If M is a Σ-model, s ∈ SM and ϕ ∈ Σ-XCTL, we define, by recursion on ϕ , the
set of modifications of M w.r.t. ϕ at s, Modif (M, s,ϕ):

1. Modif (M, s,F) = ∅ and Modif (M, s,T) = {M}
2. Modif (M, s, �) = {Lu(M, s, �)}
3. Modif (M, s,α ∨ β) = Modif (M, s,α) ∪ Modif (M, s, β)

4. Modif (M, s,α ∧ β) = {M′ ∈ KΣ | ∃Mα ∈ Modif (M, s,α). M′ ∈ Modif (Mα, s, β) & M′, s |� α ∧ β}
5. Modif (M, s,EXα) = {M′ ∈ KΣ | ∃s′ ∈ SM. M′ ∈ Modif (T+(M, s, s′), s′,α) & M′, s |� EXα}
6. Modif (M, s,AXα) = {M′ ∈ KΣ | ∃S ′ ∈ 2SM − {∅}. M′ ∈ Modif ∗(Tu(M, s, S ′), S ′,α) & M′, s |� AXα}
7. Modif (M, s,OD� n) = {M′ ∈ KΣ | ∃S ′ ∈ 2SM − {∅}. |S ′| � n & M′ = Tu(M, s, S ′)}, for � ∈ {�,>}

where Modif ∗(M, S ′,ϕ) extends Modif (M, s,ϕ) to a set of states S ′ ⊆ SM:

Modif ∗(M, S ′,ϕ
) =

{ {M} if S ′ = ∅
{M′ ∈ KΣ | ∃t ∈ S ′. ∃Mt ∈ Modif (M, t,ϕ). M′ ∈ Modif ∗(Mt , S ′ − {t},ϕ)} if S ′ �= ∅

Observe that for all M′ ∈ Modif (M, s,ϕ), M′, s |� ϕ .

3.3. A direct update algorithm for Σ-XCTL

We now define a direct algorithm, XUpd1, that we use as reference to compare our algorithm that updates protected
models. For simplicity, we temporarily ignore some concerns that will be considered in the following sections. We now focus
on Σ-XCTL, we do not include an operation for adding states, and we are not concerned about efficiency. XUpd1 (see Fig. 1)
is an algorithm similar to generate-and-test methods. First, using basic update operations, XUpd1 generates models to satisfy
the simplest subformulas of the given formula. Then, XUpd1 modifies these models to satisfy more complex subformulas.
Finally, the produced models are tested to verify whether or not they satisfy the whole formula. The case ϕ = AXα uses
XUpd

∗ , a procedure implementing Modif ∗(M, S ′,ϕ).
1

56 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
By using fixed-point characterizations (Section 2) and a mechanism for detecting loops (see Section 3.5), XUpd1(M, s,ϕ)

may be extended to an algorithm Upd1 to compute Modif (M, s,ϕ) for ϕ ∈ Σ-CTL. This extension is analogous to that of
Section 3.5.

Note that line (12) of XUpd1 is necessary to guarantee that the returned model, M′ , meets the requirement M′, s |� ϕ
in three cases of ϕ [5].

3.4. An algorithm for updating protected models

Intuitively, a call to XUpdprot((M, P), s,ϕ) gradually transforms M attempting to satisfy the subformulas of ϕ . Models
M′ produced by XUpdprot to satisfy a subformula ψ are accompanied by a protection P ′ containing a part of M′ sufficient
to satisfy ψ . In this case, we will say that M′ is protected by P ′ . A key feature of XUpdprot is that if M is protected by P
and XUpdprot((M, P), s,ψ) produces (M′, P ′), then M′ is protected by P ′ and P ′ is a protection greater than or equal to P
(Definition A.1). Hence, XUpdprot preserves satisfaction of previously treated subformulas.

Definition 3.3 (Protected update operations). Let (M, P) ∈ KPΣ , s, s′ ∈ SM , � ∈ Lit(V Σ), S ′ ⊆ SM , and S ′′ �= ∅ a finite set. The
update operations on protected models are:

1. Update � and protect �.
Lu((M, P), s, �) = (Lu(M, s, �), 〈E P , A P , L P [s ⊕ �]〉) if � /∈ L P (s).

2. Add (s, s′) to M and add (s, s′) to E P .
T+

∃ ((M, P), s, s′) = (T+(M, s, s′), 〈E P ∪ {(s, s′)}, A P , L P 〉) if s′ ∈ A P [s].
3. Replace RM[s] and A P [s] by S ′ .

Tu∀((M, P), s, S ′) = (Tu(M, s, S ′), 〈E P , A P − ({s} × (A P [s] − S ′)), L P 〉) if E P [s] ⊆ S ′ ⊆ A P [s] and S ′ �= ∅.
4. Replace RM[s] and E P [s] by S ′ .

Tu∃((M, P), s, S ′) = (Tu(M, s, S ′), 〈E P ∪ ({s} × (S ′ − E P [s])), A P , L P 〉) if E P [s] ⊆ S ′ ⊆ A P [s] and S ′ �= ∅.
5. Add S ′′ to M and extend A P and L P .

S+
∀ ((M, P), S ′′) = (S+(M, S ′′), 〈E P , A P ∪ (SM × S ′′) ∪ (S ′′ × (SM ∪ S ′′)), L P ∪ ∅S ′′ 〉) if S ′′ ∩ SM = ∅.

Since the above are partial functions, we assume that their application in cases not covered by the corresponding defini-
tions produces an undefined value (⊥). Note that all above operations, except S+

∀ , preserve the signature Σ .
We extend to protected models our definition of modification of a model.

Definition 3.4 (Modifications of (M, P) w.r.t. ϕ). If (M, P) ∈ KPΣ is a protected model, s ∈ SM and ϕ ∈ Σ-XCTL, we define,
by recursion on ϕ , the set of modifications of (M, P) w.r.t. ϕ at s, Modif ((M, P), s,ϕ):

1. Modif ((M, P), s,F) = ∅ and Modif ((M, P), s,T) = {(M, P)}
2. Modif ((M, P), s, �) = {Lu((M, P), s, �)}
3. Modif ((M, P), s,α ∨ β) = Modif ((M, P), s,α) ∪ Modif ((M, P), s, β)

4. Modif ((M, P), s,α ∧ β) = {(M′, P ′) ∈ KPΣ | ∃(Mα, Pα) ∈ Modif ((M, P), s,α). (M′, P ′) ∈ Modif ((Mα, Pα), s, β)}
5. Modif ((M, P), s,EXα) = {(M′, P ′) ∈ KPΣ | ∃s′ ∈ A P [s]. (M′, P ′) ∈ Modif (T+

∃ ((M, P), s, s′), s′,α)}
6. Modif ((M, P), s,AXα) = {(M′, P ′) ∈ KPΣ | ∃S ′ ⊆ A P [s]. E P [s] ⊆ S ′ �= ∅ & (M′, P ′) ∈ Modif ∗(Tu∀((M, P), s, S ′), S ′,α)}
7. Modif ((M, P), s,OD� n) = {(M′, P ′) ∈ KPΣ | ∃S ′ ⊆ A P [s]. E P [s] ⊆ S ′ �= ∅ & |S ′| � n & (M′, P ′) = Tu

Q ((M, P), s, S ′)}
for � ∈ {�,>}; Q = ∀ if � ∈ {�}, and Q = ∃ if � ∈ {>}

where Modif ∗((M, P), S ′,ϕ) extends Modif ((M, P), s,ϕ) to a set of states S ′ ⊆ SM and is defined analogously to
Modif ∗(M, S ′,ϕ).

In Fig. 2, we define an algorithm for updating protected models. Intuitively, XUpdprot((M, P), s,ϕ) finds models for ϕ at
state s by modifying M and respecting the protection P . The initial call to XUpdprot may use the empty protection P⊥ . The
case ϕ = AXα uses XUpd

∗
prot , a procedure implementing Modif ∗((M, P), S ′,ϕ).

Observe that XUpdprot does not need a verification similar to the verification in line (12) of XUpd1. Protections guaran-
tee that the returned model, (M′, P ′), meets the requirement (M′, P ′), s |� ϕ . First, such a requirement is fulfilled when
XUpdprot is applied to basic formulas (T, �, OD). Then, subsequent applications of XUpdprot use the current protection
to preserve the satisfaction of previously treated subformulas. For a comparison between XUpdprot and XUpd1, see Sec-
tion 5.

3.5. Model update for Σ-CTL and addition of states

We extend XUpdprot to formulas that use the operators EU, AU, ER, and AR. These operators are replaced by their fixed-
point characterizations (Section 2) and then treated by a mechanism for detecting loops. This loop-detecting mechanism is

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 57
XUpdprot((M, P), s,ϕ) % Find (M′, P ′) w.r.t. ϕ at s.
INPUT: (M, P) ∈ KPΣ , s ∈ SM , and ϕ ∈ Σ-XCTL
OUTPUT: Modif ((M, P), s,ϕ)

1 if (M, P), s |� ϕ then (M′, P ′) ← (M, P)

2 else case ϕ of
3 F : fail
4 T : (M′, P ′) ← (M, P)

5 � : if � ∈ L P (s) then fail
6 else (M′, P ′) := Lu((M, P), s, �)

7 α ∨ β : {guess δ ∈ {α,β};
8 (M′, P ′) ← XUpdprot((M, P), s, δ)}
9 α ∧ β : {(Mα, Pα) ← XUpdprot((M, P), s,α);

10 (M′, P ′) ← XUpdprot((Mα, Pα), s, β)}
11 EXα : {guess s′ ∈ A P [s];
12 (M′, P ′) ← XUpdprot(T+

∃ ((M, P), s, s′), s′,α)}
13 AXα : {guess S ′ ∈ {X ⊆ A P [s] | E P [s] ⊆ X & X �= ∅};
14 (M′, P ′) ← XUpd

∗
prot(Tu∀((M, P), s, S ′), S ′,α)}

15 OD� n : {guess S ′ ∈ {X ⊆ A P [s] | E P [s] ⊆ X & X �= ∅ & |X | � n}; % � ∈ {�,>}
16 if � ∈ {�} then Q ← ∀ else Q ← ∃;
17 (M′, P ′) ← Tu

Q ((M, P), s, S ′)}

18 return (M′, P ′)

Fig. 2. XUpdprot .

Updprot((M, P , Q), s,ϕ) % Find (M′, P ′, Q ′) w.r.t. ϕ at s.
INPUT: (M, P) ∈ KPΣ , Q ⊆ SM × Σ-CTL, s ∈ SM , and ϕ ∈ Σ-CTL.
OUTPUT: Modif ((M, P , Q), s,ϕ)

1 if (M, P), s |� ϕ then (M′, P ′, Q ′) ← (M, P , Q)

2 else case ϕ of
.
.
.

14 E[α U β]: if (s,ϕ) ∈ Q then fail % default for lfp
15 else (M′, P ′, Q ′) ← Updprot((M, P , Q ∪ {(s,ϕ)}), s, β ∨ (α ∧ EXϕ))
16 A[α R β]: if (s,ϕ) ∈ Q then (M′, P ′, Q ′) ← (M, P , Q) % default for gfp
17 else (M′, P ′, Q ′) ← Updprot((M, P , Q ∪ {(s,ϕ)}), s, β ∧ (α ∨ AXϕ))
18 return (M′, P ′, Q ′)

Fig. 3. Updprot .

XUpdS+((M, P), s,ϕ) % Add states until XUpdprot[(M, P), s,ϕ] �= ∅.
INPUT: (M, P) ∈ KPΣ , s ∈ SM = {s1, . . . , sm}, ϕ ∈ Σ-XCTL
OUTPUT: Modif (S+

∀ ((M, P), SΣ ′ − SΣ), s,ϕ)

Where, assuming n = |ϕ|, Σ ′ is the minimal signature such that: Σ ′ ⊇ Σ

and (Modif (S+
∀ ((M, P), SΣ ′ − SΣ), s,ϕ) �= ∅ or |SΣ ′ | > n8n).

1 n ← |ϕ|; m′ ← m; % Remember that SM = {s1, . . . , sm}
2 while XUpdprot[(M, P), s,ϕ] = ∅ and m′ � n8n do
3 {m′ ← |S M | + 1;
4 s′ ← sm′ ; % s′ is a new state, s′ /∈ S M

5 (M, P) ← S+
∀ ((M, P), {s′})}

6 (M′, P ′) ← XUpdprot((M, P), s,ϕ); % “←” fails if XUpdprot fails
7 return (M′, P ′)

Fig. 4. XUpdS+ .

controlled by a parameter Q ⊆ SM × Σ-CTL. The intuition behind Q is that if (s,ψ) ∈ Q , then state s has already been
visited while updating w.r.t. ψ . Updprot , depicted in Fig. 3, illustrates how to modify the pseudo-code in the cases of EU and
AR; the modifications for AU and ER are similar. The initial call to Updprot uses an empty set of visited states.

A state addition is only necessary when a model update fails to find a model with a given signature. For example,
if Σ = 〈{s0}, {p}〉, (M, P) is any protected Σ-model, and ϕ = EX p ∧ EX¬p, then XUpdprot[(M, P), s0,ϕ] = ∅. In this
case, and assuming that n = |ϕ|, we can extend our model update procedure so as to be able to add states to M until
XUpdprot[(M, P), s,ϕ] �= ∅ or |SM| > n8n . This bound on the number of states is justified by a small model theorem for
CTL [16, p. 9]: if ϕ is satisfiable then ϕ is satisfiable in a model of size less than or equal to n8n , where the size of a model
M is |SM| [16, p. 4]. In Fig. 4, XUpdS+ shows how to add states in the update process.

58 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
4. Heuristics and search strategies

A significant feature of Updprot (and Upd1) is nondeterminism. Direct deterministic implementations of nondeterministic
algorithms, however, may suffer from inefficiency. To improve the efficiency of Updprot , we propose heuristics based on an
order on the generation of nondeterministic choices from: (1) a set of states, (2) a set of sets of states, and (3) a set of two
CTL formulas. To find minimal solutions we propose a search strategy similar to iterative deepening.

For practical purposes, we make some assumptions. We assume that a finite set A is represented by a list, [A], containing
the elements of A in an arbitrary order, e.g., [A] = [a1,a2, . . . ,an]. We also assume that the command guess x ∈ [A] produces
nondeterministic choices in the order of [A], i.e., the first choice is a1, then a2 and so on. We use + and Σ to represent
the concatenation of two lists and the concatenation of a finite sequence of lists, respectively. Under these assumptions, we
show how to improve the efficiency of XUpd1(M, s,ϕ) in cases where ϕ = EXα, ϕ = AXα, or ϕ = α ∨ β (improvements
for XUpdprot are analogous).

4.1. Ordering nondeterministic choices of states

To improve the efficiency of XUpd1(M, s,EXα) we use an order on the generation of nondeterministic choices of states.
In line (7) of XUpd1, we replace the command “guess s′ ∈ SM” by “guess s′ ∈ [RM[s]] + [SM − RM[s]]”. Thus, the first
nondeterministic choices will be elements of R M [s].

4.2. Ordering nondeterministic choices of sets of states

To improve the efficiency of XUpd1(M, s,AXα) we use an order on the generation of nondeterministic choices of sets
of states. Let m = |SM|, and for i = 0, . . . ,m, let Q i(M, s) = {S ′ ⊆ SM | S ′ �= ∅ & |�(S ′, RM[s])| = i}. Therefore, if S ′ ∈
Q i(M, s) then d(T u(M, s, S ′),M) = i.

It can be shown that the elements of
∑m

i=0[Q i(M, s)] are lists representing the nonempty subsets of SM . Besides, if
S1 and S2 are two elements of the list

∑m
i=0[Q i(M, s)] and S1 occurs before S2 in such a list, then d(T u(M, s, S1),M) �

d(T u(M, s, S2),M).
In line (8) of XUpd1, we replace the command “guess S ′ ∈ 2SM − {∅}” by “guess S ′ ∈ ∑m

i=0[Q i(M, s)]”.

4.3. Ordering nondeterministic choices of formulas

To improve the efficiency of XUpd1(M, s,α ∨ β) we use an order on the generation of nondeterministic choices of CTL
formulas. In line (5) of XUpd1, we replace the command “guess δ ∈ {α,β}” by “guess δ ∈ [δ1, δ2]”, where δ1 = α, δ2 = β if
|α| � |β|, and δ1 = β , δ2 = α otherwise.

4.4. Limiting the number of changes

Besides improving efficiency, the above heuristics help Updprot to produce first models close to the input model. The
above heuristics, however, do not ensure that Updprot produces first minimal solutions. Therefore, for cases requiring a
minimal solution, we propose a variant of Updprot , Updmin , that uses a search strategy similar to iterative deepening.

We get an implementation of Updmin by modifying Updprot as follows. First, we add to Updprot a parameter, n, to record
the number of changes applied to the input model. We also include a variable, w , to fix the maximum number of changes
allowed. Second, we modify Updprot to compute the number of changes required, r, before applying an update operation.
Third, we modify Updprot to halt if n + r > w , i.e., Updprot halts if the number of changes already made, plus the number of
changes to apply, is greater than the number of changes allowed. Finally, to produce first the minimal solutions, we initialize
w to zero and we iterate Updprot , increasing w by 1, until Updprot produces a solution.

5. Behavior of UPDprot

We illustrate the behavior of Updprot with several examples, including a classical mutual exclusion problem and models
with hundreds of states. We show other examples at the web site of Updprot , http://turing.iimas.unam.mx/ctl_upd3/form1.prl.

5.1. Synthesizing a model of the mutual exclusion problem

Emerson and Clarke [15] present a method for automatically synthesizing synchronization skeletons, from a CTL specifi-
cation, through a decision procedure that constructs a model of the specification. We use Emerson and Clarke’s mutual-
exclusion example to show that our CTL update method can also be used as a decision procedure for satisfiability of CTL
formulas.

The specification of the mutual exclusion problem by Emerson and Clarke uses a variant of CTL with processes [15]. We
adapt such a specification to a specification Γ in Σ-CTL. The specification Γ is the result of factoring AG in the conjunction
of the following formulas, where i, j ∈ {1,2} and i �= j:

http://turing.iimas.unam.mx/ctl_upd3/form1.prl

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 59
Table 1
Upd1 vs. Updprot in the repair of faulty models of mutual exclusion.

N Removed parts (✗) Upd1 time [s] Updprot time [s]

s0s1 s1s3 s3s7 s2s5 n1s0 n2s1 D -cN -c? -cN -c?

1 ✗ 1.9 — 0.6 1.7
3 ✗ ✗ ✗ 67.0 — 0.8 1.8
5 ✗ ✗ ✗ ✗ ✗ 1274.8 — 0.9 8.9
6 ✗ ✗ ✗ ✗ ✗ ✗ — — 1.2 9.1

55 ✗ ✗ ✗ ✗ ✗ ✗ ✗ — — 14.9 16.4

Fig. 5. Model produced by Updprot (variables turni are omitted).

1. Start state. Both processes are in their noncritical region: (n1 ∧ n2)

2. Each process i is always exactly in one of the three code regions:
AG((ni ∨ ti ∨ ci) ∧ (ni → ¬(ti ∨ ci)) ∧ (ti → ¬(ni ∨ ci)) ∧ (ci → ¬(ni ∨ ti)))

3. Any move that process i makes from its noncritical (critical) region is into its trying (noncritical) region, and such a
move is always possible:
AG((ni → ((AX(ti ∨ ni)) ∧ (EX ti))) ∧ (ci → ((AX(ni ∨ ci)) ∧ (EX ni))))

4. Any move that process i makes from its trying region is into its critical region and such a move is possible when it is
the turn of process i:
AG((ti → (AX(ci ∨ ni))) ∧ ((ti ∧ turni) → (EX ci)))

5. A transition by one process cannot cause the other process to move. If process i is in region ri ∈ {ni, ti, ci} and process
j moves, then i remains in ri :
AG(((ri ∧ n j) → (AX(t j → ri))) ∧ ((ri ∧ t j) → (AX(c j → ri))) ∧ ((ri ∧ c j) → (AX(n j → ri))))

6. Some process can always move. If some process is in its noncritical region then both processes can move; otherwise
only one process can move:
AG(((n1 ∨ n2) → (turn1 ∧ turn2)) ∧ ((¬n1 ∧ ¬n2) → (turn1 � turn2)))

7. Each transition is due to the movement of exactly one process:
AG(((turn1 ∧ turn2) → (OD� 2)) ∧ ((¬turn1 ∨ ¬turn2) → (OD� 1)))

8. Split state s = (t1, t2, turn1, turn2) into states (t1, t2, turn1,¬turn2) and (t1, t2,¬turn1, turn2) and separate the transi-
tions going towards s. This requirement reflects a preference of Emerson and Clarke to distinguish all states by their
propositional labels [15, p. 258]:
AG((ti ∧ n j) → (EX(t j ∧ turni)))

Note that, in the specification Γ , we only use formulas to specify the local structure of the system, through the operators
AX and EX and an outermost operator AG. We do not include formulas to specify global behavior of the system by using
operators F,G,U, or R. Global behavior formulas, for example AG(ti → EF ci) and AG¬EF(c1 ∧ c2), are generally expected
to be a consequence of formulas specifying local structure. Intuitively, it is relatively easier to synthesize a model from
formulas specifying local structure than to synthesize a model from formulas specifying global behavior. Global behavior
formulas can be used instead to update a faulty model, presumably close to a correct model. A difference between model
synthesis and model update is related to the difference between these two kinds of formula.

In Table 1, we compare Upd1 and Updprot in the repair of faulty models of mutual exclusion w.r.t. Γ . Column N indicates
the number of changes needed to repair the model. Input models were obtained by removing, according to the marks ✗,
transitions (si, s j) and labels ni in s j , from the model in Fig. 5. A mark ✗ in column D means that the input model is the
dummy model in Fig. 6. Columns -cN restrict the search to a maximum of N changes. Columns -c? record searches with
an unlimited number of changes. Entries “—” mean “no answer after one hour”. The last four columns show the time, in
seconds, necessary to produce the first solution on a PC with a dual-core processor at 2.0 GHz and 2 GB of RAM.

60 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
Fig. 6. A dummy model of nine states.

Table 1 shows tests where we gradually removed some parts of the model in Fig. 5. Observe that the more parts were
removed, the more time Upd1 required to produce a solution. The option -cN helped both Upd1 and Updprot to limit the
search for solutions to models that result from applying at most N changes to the input model. Note that even with the aid
of the switch -cN , Upd1 was incapable of computing a first solution after one hour.

By using the specification Γ , the first solution produced by Updprot from the dummy model in Fig. 6 is the model in
Fig. 5, having the expected structure [15, Fig. 11, p. 259]. This happened after 16.4 s (Table 1).

5.2. Updating a microwave oven model

In Section 5.1, we showed that the application of Updprot to a dummy model can build a model that satisfies a given
formula. We now assume that the non-dummy model in Fig. 7, Moven , is given. Clarke et al. [11] use Moven to illustrate
the model-checking technique and, following Zhang and Ding [22], we use Moven to show the application of Updprot in the
update of (modifications of) Moven w.r.t. some given formulas.

The intuition behind Moven is an informal specification of the oven operation:

1. Open the door and put the food inside (→ s0).
2. Close the door (s0 → s2).
3. Press START (s2 → s5) to begin the warming of the oven (s5 → s6).
4. After warming, cooking starts automatically (s6 → s3).
5. When cooking is finished, the heat is turned off (s3 → s2).
6. While cooking, the door may be opened (s3 → s0).
7. Pressing START while the door is open produces an error (s0 → s1).
8. On error, close the door (s1 → s4) and press RESET (s4 → s2).

We formalize the above informal specification of the microwave oven by a CTL formula Ψ . The formula Ψ is the result
of factoring AG in the conjunction of the following formulas:

1. Initial state:
Ψ1 = (¬start ∧ ¬close ∧ ¬heat ∧ ¬error)

2. At any time, if the door is open, it may be closed:
Ψ2 = AG(¬close → EX close)

3. If the heat is off, START may be pressed:
Ψ3 = AG((¬start ∧ ¬heat) → EX start)

4. If START is pressed and there is no error, warming may start:
Ψ4 = AG((start ∧ close ∧ ¬heat ∧ ¬error) → EX(start ∧ heat))

5. After warming, cooking may begin:
Ψ5 = AG((start ∧ heat) → EX(¬start ∧ heat))

6. While cooking, the heat may be turned off (by elapsed time):
Ψ6 = AG((¬start ∧ heat) → EX(close ∧ ¬heat))

7. While cooking, the door may be opened:
Ψ7 = AG((¬start ∧ heat) → EX¬close)

8. If START is pressed and the door is open, an immediate error occurs:
Ψ8 = AG((start ∧ ¬close) → error)

9. On error, if the door is open, the error persists:
Ψ9 = AG((error ∧ ¬close) → AX error)

10. On error, if the door is closed, the oven may be reset:
Ψ10 = AG((error ∧ close) → EX(¬start ∧ close))

Unlike the example in Section 5.1, Moven (Fig. 7) is not characterized by the specification Ψ , but it can be proved that
Moven satisfies Ψ at s0. Besides, Moven does not satisfy at s0 a formula expressing that if START is pressed, then the heat
will eventually be turned on, ρ1 = AG(start → AF heat).

In Table 2, we show results of tests comparing Upd1 and Updprot in the repair of modifications of Moven . Input models for
these tests were obtained by modifying Moven according to the changes indicated in column “Modifications”. We use t, c,h,
and e as shorthand for variables start, close, heat and error, respectively. Given x ∈ {t, c,h, e}, a modification ix complements
the label x in the state si . A modification i j adds the transition (si, s j) to Moven if (si, s j) /∈ RMoven , otherwise i j removes

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 61
Fig. 7. Moven , a Kripke model for a microwave oven.

Table 2
Upd1 vs. Updprot in the repair of modifications of Moven .

Input Upd1 time [s] Updmin time [s] Updprot time [s]

Modifications ϕ -cm -c? n -c? m -cm -c? n

None ρ1 0.1 0.1 4 0.1 1 0.1 0.1 4
0h,2c ϕ2 0.1 — — 0.1 3 0.1 0.1 7
0h,2c,5t ϕ3 2.0 — — 0.4 4 0.1 0.1 10
0h,6h,1h,02,3h ϕ7 36.5 — — 2.2 5 0.3 0.1 11
6t,0t,2c,4t,4e,3t,6e ϕ10 72.5 — — 2.0 5 0.1 0.1 15

(si, s j) from Moven . Column ϕ shows the formula used for updating the input model. For j � 0, ϕ j = ρ1 ∧ (
∧ j

i=1 Ψi). We

designed modifications so that the modification of Moven in row ϕ j does not satisfy
∧ j

i=1 Ψi . Columns -cm and -c? show
time (in seconds) necessary to produce a first solution. Columns -cm show solutions with a search restricted to a maximum
of m changes. Columns -c? record solutions of searches with an unlimited number of changes, i.e., without using m. Columns
n indicate the number of changes needed to generate a first solution with the option -c?. Column m, computed by Updmin ,
is the minimum number of changes needed to repair the input model. Entries “—” mean “no answer after 600 s”. The initial
protection in the execution of Updmin and Updprot was P⊥ . These tests were performed on a PC with a quad-core processor
at 2.0 GHz and 8 GB of RAM.

We gradually removed some parts of Moven and gradually augmented the complexity of the input formula. Observe that
the more parts were removed, Upd1 required more (or the same) time to produce a solution. Intuitively, the option -cm
helps both Upd1 and Updprot because it restricts the search space to the set of models that result from applying at most m
changes.

Remark that in the update of Moven w.r.t. ρ1, both Upd1 and Updprot produced a first solution in less than one second,
even without the aid provided by a limit on the number of changes (Table 2). Thus, Upd1 and Updprot had a similar
performance when updating Moven w.r.t. ρ1. Unlike Updprot , however, an update through Upd1 may cause Moven to lose
some of its properties, for example satisfying (parts of) the specification Ψ . Indeed, the first solution of Upd1(Moven, s0,ρ1)

does not satisfy Ψ . Even worse, many of the first solutions of Upd1(Moven, s0,ρ1) do not satisfy Ψ , as can be inferred from
the running time of Upd1(Moven, s0,ϕ10) (Table 2).

In practice, a formula used to update a given model is usually more complex than ρ1. A formula for a model update may
include subformulas expressing properties that motivated the design of the model, i.e., a model specification (e.g., Ψ).

Note that ρ1 expresses an undesirable property. If Moven satisfied ρ1, then the heat could be turned on with the door
open and thus harm the user. Following [22], we considered an update of Moven to satisfy ρ1 at s0.

Column -c? of Upd1 of Table 2 shows that, without the help of m, Upd1 can produce an answer in less than 600 s only
in the case of formula ρ1. In contrast, all the corresponding answers of Updprot are produced in less than one second.

5.3. Updating the model of a counter

The next example exhibits the behavior of Updprot in a readily scalable problem: a synchronous counter. Nondeterminism
is reflected as an external input making the counter either count or halt. Each state has exactly two successors, intended to
represent a system with two successors per state on average. Instead of making the counter halt immediately, we ask it to
eventually halt, making our example more representative of typical model-checking uses, where a property is required to
eventually hold.

A specification of an n-bit synchronous counter is the conjunction of the formulas below, where i ∈ {0, . . . ,n − 1}:

1. Each state has exactly two successors: OD� 2 ∧ OD> 1.
2. If the input is “count” (¬h) and either the bit i is on or the i least-significant bits are on, then the bit i will be on.

Otherwise the bit i will be off (two formulas for each i):

62 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
Table 3
Updprot applied to faulty models of synchronous counters.

states trans.
removed

loops
added

time

64 64 0 1
96 32 7

128 64 13

128 128 0 8
192 64 77
256 128 155

states trans.
removed

loops
added

time

256 256 0 55
384 128 1355
512 256 2662

512 512 0 140
576 64 950
640 128 3776

Table 4
Updprot applied to a random model M and a random formula ϕ .

M: 10 var, 1024 sts, 2048 trn

formula chg time

10∨,10∧,20X 4 7
+2U 2 5
+2U ,2R 2 23
+2U ,2R,2F 3 411
+2U ,2R,2F ,2G — —

ϕ: 10var, 5∨, 5∧, 2X , 2U , 2R , 2F , 2G

model states-trans. chg time

128 256 2 1
256 512 22 4
512 1024 49 36

1024 2048 48 157
2048 3072 — —

(¬h ∧ (xi � (x0 ∧ · · · ∧ xi−1))) → AX xi
¬(¬h ∧ (xi � (x0 ∧ · · · ∧ xi−1))) → AX¬xi
By convention (x0 � (x0 ∧ · · · ∧ x0−1)) = ¬x0.

3. If a state having all its bits off is reached when not counting (h), then the counter remains there:
(h ∧ ¬x0 ∧ · · · ∧ ¬xn−1) → AX(¬x0 ∧ · · · ∧ ¬xn−1)

4. When not counting, the counter eventually reaches a state having all its bits off:
h → A[h U ¬x0 ∧ · · · ∧ ¬xn−1]

In this example, we will assume that we wish the state labels to remain fixed, and will update the transitions only. This
can be readily achieved in Updprot with an initial protection protecting all the labels. In Upd1, we can simply inhibit the
fragment code that modifies labels. Note also that the specification must hold at all states.

Input models were obtained by intentionally modifying a model satisfying the specification with either the removal of
correct transitions of the addition of wrong transitions. The wrong transitions added are self-loops, so that if all correct
transitions are removed and all states have loops, we obtain the dummy model as input model, representing the worst of
cases.

Table 3 shows the time, in seconds, taken by Updprot to obtain a synchronous counter from the specification for different
faulty models. (Upd1 took more than one hour even for the simplest (i.e., the first) instance on the table.) The columns
labeled “states” have the number of states resulting from considering the bits of the counter itself in addition to the
control bit h. The columns labeled “trans. removed” indicate the number of transitions removed from the correct model.
The columns labeled “loops added” indicate the number of loops added. The lines in boldface refer to dummy models.

The tests were done on a PC with a dual-core processor at 2.0 GHz and 2 GB of RAM.
Although current model checking practice often employs models with a vast number of states, the fact that Updprot can

handle some examples with hundreds of states shows that our method could at least be useful for abstractions of systems.

5.4. Updprot applied to random models and formulas

Here we show the behavior of Updprot when applied to randomly generated models and formulas. Table 4 (left) shows
the application of Updprot to a random model, M , generated with 10 variables, 1024 states and 2048 transitions. We applied
Updprot to update M w.r.t. random formulas that were generated with the operators listed in the first column. All formulas
in this column were generated with a set of operators containing 10 ∨, 10 ∧, 10 EX, and 10 AX. The formula in the second
row was generated by using two additional U operators, one EU and one AU. The formulas in the other rows were similarly
generated. Columns “chg” and “time” of Table 4 (left and right) respectively show the number of changes made by Updprot

and the running time in seconds. Entries “—” mean “no answer after 600 seconds”. We discarded running times greater
than 600 seconds because the formula (left) or the model (right) along the respective model or formula, could be a case of
unsatisfiable formula or a case of hard complexity, respectively.

Table 4 (right) shows the application of Updprot to a random formula, ϕ , generated with 10 variables, five operators ∨,
five ∧, and one of all other operators (EX, AX, EU, AU, ER, AR, EF, AF, EG, AG). We applied Updprot to update, w.r.t. ϕ ,
models that were generated using 10 variables and the number of states and transitions listed respectively in the first two
columns.

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 63
Note that the running times of Updprot in Table 4 are for specific instances of the update problem tackled by Updprot .
The running times cannot be as good for all instances because the worst-case complexity of Updprot is exponential w.r.t. the
size of ϕ (see Appendix B). The results in Table 4, however, show that Updprot may have an acceptable performance when
applied to models with hundreds of states, without a particular structure, w.r.t. non-simple CTL formulas.

5.5. Updprot applied to models with few states

Finally, we mention an example comparing Upd1 and Updprot with a single-state model. This example can be found
at the website of Updprot . The formula used in this example was built as follows. First, by using 25 variables, we built a
propositional formula ϕ resulting from the conjunction of 105 clauses with three literals. By construction, ϕ is satisfiable
only by one truth assignment. Then, we transformed ϕ into a temporal formula ϕ′ by prefixing every literal of ϕ with EX.
We observe that Updprot updated a dummy one-state model w.r.t. ϕ′ in less than 30 seconds, while Upd1 did not produce
any model after more than one hour. When we changed the model to a two-state dummy model, Updprot produced a
solution in less than one second. Of course, a SAT solver can be efficiently solve these problems by using ϕ instead of ϕ′ .
This example, however, shows two points. First, even CTL-update instances with few states can be hard for a CTL updater.
Second, an increase in the number of states may reduce the time required by a CTL updater.

6. Related work

In this section, we first give a simple example of the structure of counterexamples for CTL formulas with references to
the main work on this issue. Then, we compare our work with other approaches, both for full CTL and for CTL fragments.

6.1. Structure of counterexamples

Some of the existing methods for CTL model update are wholly or partially based on counterexamples. Thus, we include
here some of the main concepts of counterexamples.

In general, existential properties cannot be disproved by counterexamples. Therefore, counterexamples for CTL formulas
are limited to ACTL, the universal fragment of CTL where only the path quantifier A is allowed, and negation is restricted to
atomic subformulas.

Buccafurri et al. [1, p. 25] observe that in many cases a counterexample for an ACTL formula is (essentially) a single path,
but there are cases in which a counterexample tree is required. Hence, these authors extend the concept of counterexample
presented by Clarke et al. [10] through the introduction of multi-paths as a suitable formalization of counterexample trees.

We illustrate multi-paths with a simple example. Suppose M is a Kripke model such that SM = {s0, s1, s2}, RM =
{(s0, s1), (s0, s2), (s1, s1), (s2, s2)}, LM(s0) = ∅, LM(s1) = {p} and LM(s2) = {q}. If ϕ1 = AF p, then π1 = [s0, s2, s2, . . .] is a
path having all information needed to explain why M, s0 �|� ϕ1. Thus, the single path π1 is a (linear) counterexample for ϕ1.
Conversely, if ϕ2 = AF AG p, then π1 may help to track down causes of M, s0 �|� ϕ2, but π1 does not have all the information
needed to provide an explanation for this failure. A detailed explanation of why M, s0 �|� ϕ2 is contained in a multi-path
π2 = [π1,π3,π3, . . .], where π3 = [s2, s2, . . .]. Each element of π2 is a path, π , explaining why M,π(0) �|� AG p. Hence,
unlike the single path π1, the multi-path π2 is a counterexample for ϕ2.

Linear counterexamples are preferred for their simplicity and efficient generation through widely used algorithms. Un-
fortunately, these algorithms are incomplete w.r.t. ACTL because only properties in ACTL ∩ LTL have linear counterexamples.
In addition, it is PSPACE-hard to decide whether a given ACTL formula always admits a linear counterexample [2]. Thus, to
construct linear counterexamples, an ACTL model checker must solve an unfeasible problem for detecting those cases where
this construction is possible.

In a later work, Clarke et al. [9] propose tree-like counterexamples as a class of counterexamples not bearing the inadequa-
cies of linear counterexamples. The class of tree-like counterexamples is complete for AΩ , a logic containing ACTL, i.e., each
violation of an ACTL formula is witnessed by a suitable tree-like counterexample [9]. Clarke et al. also provide an efficient
algorithm to generate tree-like counterexamples for AΩ .

We conclude that, in addition to considering that a formula may have more than one counterexample, update methods
based on counterexamples should take into account the structure of the counterexamples.

6.2. Other approaches to CTL model update

We compare our work with other approaches in chronological order of publication: Buccafurri et al. [1], Calzone et
al. [3], Zhang and Ding [22], a previous work by us [4], Ding and Hemer [13], Kelly et al. [19] and [20], Guerra and
Wassermann [17], and Chatzieleftheriou et al. [7].

6.2.1. Buccafurri et al.
Buccafurri et al. [1] develop an update method, employing multi-path counterexamples to generate fewer plausible mod-

ifications than those of a naive method. Their method, based on counterexamples, is limited to ACTL.
Buccafurri et al.’s method modifies programs composed of collections of processes running in parallel. Such programs

are modeled as Kripke models with an asynchronous accessibility relation having interleaving and processes that are syn-
chronized with a fair scheduler. These authors assume a mapping between a program and its corresponding Kripke model.

64 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
Such a mapping only allows modifications at the Kripke-model level that correspond to modifications at the program level
belonging to a repertoire of modifications and respecting the fairness constraints. At the program level, the modifications
are of three kinds: (a) negation of the right-hand side of an assignment statement having either “true” or “false” on the
right-hand side, (b) change of the variable on the left-hand side of an assignment statement, and (c) the swapping of two
consecutive assignment statements. At the Kripke-model level, these modifications correspond to the addition and removal
of transitions.

Given a counterexample, only statements corresponding to states occurring in such a counterexample are considered for
either right-hand side assignment changes or swapping of statements. Similarly, only variables occurring in counterexamples
are considered for left-hand side assignment changes. Buccafurri et al. [1] illustrate their method in a mutual-exclusion ex-
ample, assuming a single error. A naive repair method makes 77 correction attempts, whereas their method makes only 17.

As a conclusion, Buccafurri et al.’s method is centered around the use of tree-like counterexamples to reduce the number
of correction attempts of a naive repair method.

6.2.2. Calzone et al.
Calzone et al. [3] present a modeling system, Biocham, able to translate a biochemical network N into a Kripke model

MN . If ϕ is a CTL formula expressing a property of N , and MN does not satisfy ϕ , then, in some cases of ϕ , Biocham can
generate an update N ′ such that MN ′ does satisfy ϕ .

Biocham’s update algorithm proceeds according to three kinds of CTL formulas: universal formulas contain only non-
negated universal operators, existential formulas contain only non-negated existential operators, and unclassified formulas
contain both universal and existential operators.

If ϕ is universal, then Biocham uses NuSMV [8] to compute a counterexample. Next, Biocham generates and tests models
by deleting transitions occurring in such a counterexample. If ϕ is existential, then Biocham generates and tests models by
adding transitions with a bias taken from the application domain. If ϕ is unclassified, then Biocham treats ϕ by deleting
and adding transitions. However, the deletions (additions) for satisfying universal (existential) formulas may dissatisfy some
existential (universal) or unclassified formulas. Therefore, trying to satisfy the three kinds of formulas, Biocham uses a
heuristic: it first treats the existential formulas, then the unclassified ones, and finally the universal ones. If some formulas
are dissatisfied by the last step, the process repeats.

On the one hand, a drawback of Biocham, compared with our method, is that the use of biases and heuristics makes it
incomplete. Another disadvantage is that the use of domain-dependent biases makes it a non-general method. On the other
hand, since NuSMV represents models with usually compact binary decision diagrams (BDDs), Biocham is able to process
large models [6]. This is a significant advantage of Biocham compared to Updprot or any other extensional updater.

6.2.3. Zhang and Ding
Zhang and Ding [22] devise a recursive and syntax-directed model-update method w.r.t. CTL formulas that employs

“constraints”. Constraints appear in the treatment of conjunction α ∧ β , which is performed as follows (see Fig. 8). First
Zhang and Ding’s algorithm updates the input model w.r.t. α. Then such an algorithm updates the models obtained when
treating α to produce models satisfying β , using α as a constraint.

Fig. 8. Zhang and Ding’s [22, p. 141] Update∧ .

The treatment of constraints is described in Fig. 9: Candidate models are simply model-checked w.r.t. the input con-
straints. If a model satisfying the constraints is found, such a model is returned; otherwise, Zhang and Ding’s algorithm
looks for another model.

Fig. 9. Zhang and Ding’s [22, p. 143] Constraint handling.

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 65
Let us compare the treatment of conjunction of Zhang and Ding’s Update∧ (Fig. 8) with that of our generate-and-test
XUpd1 (Section 3.3). Observe that Update∧ employs the first conjunct α of a conjunction α∧β as a constraint for repeatedly
updating w.r.t. β until a candidate model satisfying α is found. Next note that when dealing with conjunction, our XUpd1
model-checks the candidate models (line 12) resulting from updating w.r.t. a conjunction α ∧ β until a model satisfying
such a conjunction is found (or failure occurs), hence also model-checking w.r.t. α the models that were obtained when
treating β . Consequently, the treatments by Zhang and Ding’s Update∧ and our XUpd1 of formulas of the form α ∧ β are
similar to each other. In comparison, Updprot does not verify that an update w.r.t. β satisfies α.

Zhang and Ding [22, Theorem 8] assert that “CTLUpdate((M, s0), φ) terminates and generates an admissible model to
satisfy φ”. However, there is no guarantee that CTLUpdate((M, s0), φ) generates all possible “admissible” models [17]. By
contrast, we prove that XUpdprot is sound and complete (Appendix A). Besides, Zhang and Ding’s algorithm is less clear
than Updprot because it uses an operator base ({EX,AF,EU}) more appropriate for model checking than for model update.
For example, it is not clear how Zhang and Ding’s algorithm updates a model to satisfy any of the formulas AXα, EFα, or
A[α U β].

6.2.4. Carrillo and Rosenblueth
In another work [4], we extend a former version of Updprot so as to update a concise representation of a Kripke model

instead of the Kripke model itself. This former version of Updprot is also based on protections, but the universal protection
is different from the one we developed here. Instead of consisting of the set of transitions that we can add, as happens in
Updprot , this former universal protection is a set of (state, formula)-pairs meant for preserving the truth value of already-
treated AX subformulas. Recall that for AXα to hold at s0, α must hold at all successors of s0. By recording a pair of the
form (s0,α), it is possible to accompany the addition of a successor of s0 with an invocation to the update algorithm so that
α holds at the new successor of s0. The recording of (s0,α) hence allows this method to avoid having to update the old
successors again, as would happen in a generate-and-test method. The protections used in [4], however, are unsatisfactory
because it is unclear if the resulting algorithm is complete.

To achieve a good scaling, this state-by-state method is extended with a concise representation of Kripke models, which
can be viewed as a simplification of SMV’s model-description language. The next value x′

i of a variable xi is defined by
a function f i : S → P({0,1}) − {∅}, which can be written with a number of abbreviations, including a default value. In
addition, [4] provides operations modifying such descriptions of Kripke models. It remains to explore the possibility of
extending Updprot to such descriptions possibly achieving a better scaling than Updprot .

6.2.5. Ding and Hemer
Ding and Hemer [13] make an improvement over [12,22] in the treatment of formulas of the form AGϕ , where ϕ

is a propositional formula. Such an improvement produces fewer candidate models than the method in Ding’s thesis [12].
Essentially, the original method of [12] preserves existing paths between an initial state and an arbitrary state. The improved
method [13], by contrast, preserves existing paths between any two states. Ding and Hemer apply their improved update
method to a cache coherence protocol for the Andrew file system (AFS-1) [21], and generate 125 candidate models, instead
of 225.

As [13] is an improvement over [22], we must now evaluate [13]. In the AFS-1 example, Ding [12] gives as input to the
updater a Kripke model and a formula:

AG
(
(Server.belief = valid) → (Client.belief = valid)

)
(1)

which is false in the input Kripke model. Note that this formula represents an undesired property, and is included in [21]
only to illustrate SMV’s counterexamples. Hence, the produced models have an undesired property. Ding [12, p. 100], how-
ever, observes that: “[. . .] after our model updating, we do not need to consider the logic outcome of the updated models
under the false specification property.”

Moreover, Ding ignores another formula given in [21]:

AG
(
(Client.belief = valid) → (Server.belief = valid)

)
(2)

which is true in the input model and represents a desired property. As a result, the produced models may not satisfy (2).
If (2) were considered, not only would fewer models be produced, but such models would satisfy a formula representing a
desired property. When more properties are given to an updater, even fewer models are generated. For instance, we gave
Updprot a complete CTL specification of the input model, together with (1), reducing the number of produced models to zero
(the reason is that (1) is not only false in the model, it is also inconsistent with the specification).

We conclude that the proliferation of models produced by Ding’s updater is not an inherent problem of model update,
but rather a consequence of ignoring desired properties. Hence, instead of preferring models preserving existing paths (the
reason for which, incidentally, is not justified in [12,22]), formulas representing desired properties should be considered.

6.2.6. Kelly et al.
Kelly et al. [19] and Kelly and Zhang [20] present a counterexample-based method for ACTL. They report experiments on

the mutual-exclusion problem of [1] and the sliding-window protocol, respectively.

66 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
Although the authors do not give their algorithm, we know that “[it] was designed with a top down recursive approach
with respect to the given model and properties.” [20, p. 16]. In addition, Kelly et al. [19] observe that “when we perform
a model update, we may require this update not violate other specified functions (e.g. breaking a deadlock should not
violate a liveness in a concurrent program).” [19, p. 138]. For this purpose, a Kripke model is augmented with “actions”
labeling transitions, as well as a set of two kinds of deterministic finite-state automaton, meant to encode constraints on
the values of variables, and constraints on the precedence of actions within a path, respectively. Each such automata has a
distinguished “violation” state. Although Kelly et al. [19] do not describe the construction of the automata, we know that
such automata encode “complex constraints that are usually not expressible [. . .] in the form of ACTL (or CTL) formulas.” [19,
p. 139]. In the experiments of both [19] and [20], the formulas are of the form AGϕ , where ϕ is a propositional formula.
Kelly and Zhang [20] report updates of models with up to 512 states (though apparently the automata were not used for
these experiments).

6.2.7. Guerra and Wassermann
In the next work we cover, Guerra and Wassermann [17] give an algorithm for performing CTL model revision using

Zhang and Ding’s CTLUpdate. Belief update supposes a dynamic world, and new information represents changes in such a
world. Belief revision, by contrast, assumes a static world and the objective is to restore consistency as new information is
added.

Guerra and Wassermann give the following algorithm for model revision: Let ψ be a belief base and φ a new belief. Let
S be a set of models initialized to ∅. Models satisfying ψ are enumerated. Models satisfying ψ which also satisfy φ are
added to S . Models satisfying ψ which do not satisfy φ are updated with CTLUpdate and the results are added to S . Finally,
Guerra and Wassermann remove the models that are not minimal w.r.t. the models satisfying ψ from the set S .

These authors assert that their model-revision algorithm can be more adequate than Zhang and Ding’s CTL model update
when applied to system modifications in a static context. Since the advantages these authors find over Zhang and Ding’s
model-update method do not depend on the inner workings of such a method, it seems fair to conclude that Guerra and
Wassermann’s algorithm would also be preferable to ours for model revision if Updprot were substituted for CTLUpdate.

6.2.8. Chatzieleftheriou et al.
Finally, Chatzieleftheriou et al. [7] develop a CTL update method employing model abstraction. An abstraction of a Kripke

model is determined by a function mapping a set of concrete states to an abstract state. Instead of an accessibility relation,
such an abstraction has two relations: Rmust and Rmay . There is a transition in Rmust from ŝ1 to ŝ2 if there are transitions
from all concrete states of ŝ1 to some concrete state of ŝ2. By contrast, there is a transition in Rmay from ŝ1 to ŝ2 if there is
a transition from some concrete state of ŝ1 to some concrete state of ŝ2. A literal labels an abstract state only if such a literal
labels all concrete states of such an abstract state. Hence, the abstract labeling function is partial. As a result, abstraction
uses 3-valued semantics. If the truth value of a formula at an abstract state is undefined, a refinement step is performed so
as to get a more concrete abstraction and thus obtain a true or false value.

Like both our technique and Zhang and Ding’s (2008), this method is recursive and employs additional, auxiliary informa-
tion generated by other subformulas. Such information, in this case, is a set of (state, formula)-pairs, also called constraints,
and is used as follows. Chatzieleftheriou et al.’s algorithm produces models satisfying both the input formula and constraints
as output. At the same time, update at a state s w.r.t. α ∧ β proceeds by first treating α with (s, β) added to the set of
pairs, then treating β with (s,α) added to the set of pairs, and finally “combining both results appropriately” [7, p. 349].

Let us now assess Chatzieleftheriou et al.’s method. First, although Chatzieleftheriou et al. assert the soundness of their
method, these authors do not assert its completeness.

Second, Chatzieleftheriou et al. [7] give a deterministic algorithm, as opposed to our method, which is nondeterministic.
We believe that a nondeterministic approach has the advantage of allowing a separation of the essence from the search
strategy of the algorithm.

Lastly, Chatzieleftheriou et al. [7] use abstractions, thus introducing a relevant improvement element in terms of effi-
ciency. This suggests that it would be promising to explore the possibility of developing an algorithm combining Chatzieleft-
heriou et al.’s abstractions with our protections so as to obtain a method having the best of both these methods.

7. Conclusions

Recursive, syntax-directed methods for CTL update confront two dual difficulties: The removal of a transition may dis-
satisfy an already-treated existential subformula. Similarly, the addition of a transition may dissatisfy an already-treated
universal subformula. A direct way of dealing with this situation would be to repetitively model-check (i.e., test) a modified
(i.e., generated) model w.r.t. already-treated subformulas, yielding a method similar to generate-and-test techniques. Another
way would be to record information (e.g., a protection) of already-treated subformulas allowing only certain changes on the
model to be modified so as to preserve the truth value of the already-treated subformulas. We showed that with appro-
priate protections it is possible to avoid the model-checking stage of the direct approach, thus producing a more efficient
method.

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 67
We exhibited the behavior of our method, Updprot , on several examples. In all cases Updprot behaved favorably compared
with a generate-and-test method. First, we synthesized the synchronization skeleton of Emerson and Clarke’s mutual-
exclusion example [15] from a dummy model (having the identity relation as its accessibility relation).

Next, we formalized an informal specification of Clarke et al.’s microwave-oven example [11]. By gradually removing
parts of a correct model and gradually augmenting the complexity of the input formula, we obtained different instances of
this problem.

To measure the performance of Updprot on larger examples, we employed two sets of problems. First, we used models
representing counters of different sizes that either count or are externally reset. Updprot was able to completely synthesize
(from a dummy model) instances with up to 256 states in less than one hour, and repair a faulty model with 512 states,
making 768 changes in the process, in around one hour of CPU time. Fewer changes would mean the possibility of handling
larger instances.

Subsequently, we used randomly generated models and formulas. We showed the behavior of Updprot , first fixing the
model and varying the formula, and then fixing the formula and varying the model. We obtained results in a reasonable
time with up to 1024 states. These two sets of examples (counters and random models and formulas) show the possible
usefulness of our method in abstractions of models with many more states.

Finally, we proved the soundness and completeness of XUpdprot (Appendix A), and we provided a complexity analysis of
Updprot (Appendix B).

There are several possible avenues for future research. First, we believe that our protections could potentially benefit from
ideas used in other update methods, including LTL update. For example, Jobstmann et al. [18] employ games to perform LTL
model update. The system to be corrected is converted to an infinite game played between the system (the protagonist) and
the environment (the antagonist).

Second, the close connections between model update and reasoning about actions and change (e.g., [14]) suggest inves-
tigating the possibility of adapting our approach to methods developed for such reasoning.

Finally, a better scaling might be achieved by codifying protected models and protections with symbolic techniques, such
as BDDs.

Acknowledgments

We gratefully acknowledge the facilities provided by IIMAS, UNAM and the financial support from DGAPA grant PAPIIT
IN113013. We should like to thank Sergio Rajsbaum and Pedro Góngora, who gave us useful comments and suggestions,
Michael Scott White, who proposed English changes, and the referees, who made insightful observations.

Appendix A. Soundness and completeness

We outline here a proof of soundness and completeness for XUpdprot . The application of XUpdprot to a protected model
(M, P) should produce protected models (M′, P ′) such that P ′ is “greater than or equal to” P . Therefore, we start by
defining a partial order on protections suitable for model update.

Definition A.1 (Relation �). If P , P ′ ∈ PΣ are two protections, then we say that P ′ is greater than or equal to P , and we write
P ′ � P if E P ′ ⊇ E P , A P ′ ⊆ A P , and ∀t ∈ SΣ : L P ′

(t) ⊇ L P (t).

Theorem A.2. The relation � is a partial order on PΣ .

Proof. Note that the relation � is defined by the partial orders ⊆ and ⊇.
Thus, if P ∈ PΣ , then E P ⊇ E P , A P ⊆ A P , and ∀t ∈ SΣ : L P (t) ⊇ L P (t). Therefore, P � P , and � is reflexive. Similarly, we

can show that � is antisymmetric and transitive. �
Protected update operations, when applicable, produce a protected model with a protection greater than or equal to the

protection of the input model. That is, these operations do not decrease protections.

Theorem A.3 (Operations do not decrease protections). Given (M, P) ∈ KPΣ , s, s′ ∈ SM , � ∈ Lit(V Σ), S ′ ⊆ SM , and the following
conditions:

1. � /∈ L P (s) and (M′, P ′) = Lu((M, P), s, �)
2. s′ ∈ A P [s] and (M′, P ′) = T+

∃ ((M, P), s, s′)
3. E P [s] ⊆ S ′ ⊆ A P [s], S ′ �= ∅, and (M′, P ′) = Tu∀((M, P), s, S ′)
4. E P [s] ⊆ S ′ ⊆ A P [s], S ′ �= ∅, and (M′, P ′) = Tu∃((M, P), s, S ′),

if (1), or (2), or (3), or (4), then (M′, P ′) ∈ KPΣ and P ′ � P .

68 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
Proof. (According to the above 1–4 conditions)

1. If � /∈ L P (s) and (M′, P ′) = Lu((M, P), s, �), then
(M′, P ′) = (Lu(M, s, �), 〈E P , A P , L P [s ⊕ �]〉).
Therefore, M′ = Lu(M, s, �) = 〈SM, RM, LM[s ⊕ �]〉, and
P ′ = 〈E P , A P , L P [s ⊕ �]〉.
Hence, the only difference between M′ and M, and between P ′ and P is in the third component.
Since M� P , we have E P ⊆ RM ⊆ A P , and ∀t ∈ SM : LM(t) ⊇ L P (t). Thus, to conclude that M′ � P ′ , all we need to
show is that ∀t ∈ SM : LM[s ⊕ �](t) ⊇ L P [s ⊕ �](t).
If t �= s then LM[s ⊕ �](t) = LM(t) ⊇ L P (t) = L P [s ⊕ �](t).
If t = s then LM[s ⊕ �](t) = (LM(s) ∪ {�}) − {�} ⊇ (L P (s) ∪ {�}) − {�} = L P [s ⊕ �](t).
Hence, M′ � P ′ and (M′, P ′) ∈ KPΣ .
Besides, E P ′ = E P ⊇ E P , and A P ′ = A P ⊆ A P . Thus, to conclude that P ′ � P , all we need to show is that ∀t ∈ SΣ :
L P ′

(t) ⊇ L P (t).
If t �= s then L P ′

(t) = L P [s ⊕ �](t) = L P (t) ⊇ L P (t).
If t = s then L P ′

(t) = L P [s ⊕ �](t) = (L P (s) ∪ {�}) − {�} ⊇ L P (s) = L P (t), because � /∈ L P (s).
Therefore, P ′ � P .

2. If s′ ∈ A P [s] and (M′, P ′) = T+
∃ ((M, P), s, s′), then

(M′, P ′) = (T+(M, s, s′), 〈E P ∪ {(s, s′)}, A P , L P 〉)
Therefore, M′ = T+(M, s, s′) = 〈SM, RM ∪ {(s, s′)}, LM〉, and
P ′ = 〈E P ∪ {(s, s′)}, A P , L P 〉.
Hence, the only difference between M′ and M, and between P ′ and P is in the first and second components, respec-
tively.
Since M� P , we have E P ⊆ RM ⊆ A P , and ∀t ∈ SM: LM(t) ⊇ L P (t). Thus, to conclude that M′ � P ′ , all we need to
show is that E P ′ ⊆ RM′ ⊆ A P ′

.
Since s′ ∈ A P [s], E P ′ = E P ∪ {(s, s′)} ⊆ RM ∪ {(s, s′)} = RM′ ⊆ A P ∪ {(s, s′)} = A P ′

.
Hence, M′ � P ′ and (M′, P ′) ∈ KPΣ .
Besides, we have A P ′ = A P ⊆ A P , and ∀t ∈ SΣ : L P ′

(t) = L P (t) ⊇ L P (t). Thus, to conclude that P ′ � P , all we need to
show is that E P ′ ⊇ E P .
Clearly, E P ′ = E P ∪ {(s, s′)} ⊇ E P .
Therefore, P ′ � P .

3. If E P [s] ⊆ S ′ ⊆ A P [s], S ′ �= ∅, and (M′, P ′) = Tu∀((M, P), s, S ′), then
(M′, P ′) = (Tu(M, s, S ′), 〈E P , A P − ({s} × (A P [s] − S ′)), L P 〉).
Therefore, M′ = Tu(M, s, S ′) = 〈SM, (RM−({s}× RM[s]))∪({s}× S ′), LM〉, and P ′ = 〈E P , A P −({s}×(A P [s]− S ′)), L P 〉.
Hence, the only difference between M′ and M, and between P ′ and P is in the second component.
Since M� P , we have E P ⊆ RM ⊆ A P , and ∀t ∈ SM: LM(t) ⊇ L P (t). Thus, to conclude that M′ � P ′ , all we need to
show is that E P ′ ⊆ RM′ ⊆ A P ′

.
Since E P [s] ⊆ S ′ ⊆ A P [s], and S ′ �= ∅, we have
E P ′ = E P ⊆ (RM − ({s} × RM[s])) ∪ ({s} × S ′) ⊆ A P − ({s} × (A P [s] − S ′)) = A P ′

.
Hence, M′ � P ′ and (M′, P ′) ∈ KPΣ .
Besides, we have E P ′ = E P ⊇ E P , and ∀t ∈ SΣ : L P ′

(t) = L P (t) ⊇ L P (t). Thus, to conclude that P ′ � P , all we need to
show is that A P ′ ⊆ A P .
Clearly, A P ′ = A P − ({s} × (A P [s] − S ′)) ⊆ A P .
Therefore, P ′ � P .

4. If E P [s] ⊆ S ′ ⊆ A P [s], S ′ �= ∅, and (M′, P ′) = Tu∃((M, P), s, S ′), then
(M′, P ′) = (Tu(M, s, S ′), 〈E P ∪ ({s} × (S ′ − E P [s])), A P , L P 〉).
In a manner analogous to the above case, we can show that (M′, P ′) ∈ KPΣ and P ′ � P . �

As a consequence of Theorem A.3, we get one of the key features of the modification of protected models: The protection
of a modification is greater than or equal to the protection of the input model.

Theorem A.4 (Modifications do not decrease protections). Let (M, P) ∈ KPΣ , s ∈ SM , S ′ ⊆ SM , and ϕ ∈ Σ-XCTL.
If (M′, P ′) ∈ Modif ((M, P), s,ϕ) or (M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ) then P ′ � P .

Proof. If (M′, P ′) ∈ Modif ((M, P), s,ϕ) or (M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ), then either (M′, P ′) = (M, P), or (M′, P ′) is
obtained from (M, P) by the application of protected update operations. Therefore, by Theorem A.3, P ′ � P . �
Theorem A.5 (� preserves satisfiability). Let (M, P), (M′, P ′) ∈ KPΣ , s ∈ SM , and ϕ ∈ Σ-XCTL. If P ′ � P and (M, P), s |� ϕ then
(M′, P ′), s |� ϕ .

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 69
Proof. Suppose P ′ � P and (M, P), s |� ϕ . We proceed by induction on the structure of ϕ .
Basis.

1. Cases ϕ = F and ϕ = T are trivial.
2. If ϕ = �, then � ∈ L P (s) ⊆ L P ′

(s). Thus, (M′, P ′), s |� �.
3. Cases of ϕ = OD� n and ϕ = OD> n are similar to the case ϕ = AXα (see below).

Induction. Let IH be the induction hypothesis.

1. If ϕ = α ∨ β , then w.l.o.g. (M, P), s |� α.
Therefore, by IH, (M′, P ′), s |� α. Thus, (M′, P ′), s |� α ∨ β .

2. The case ϕ = α ∧ β is similar to the case ϕ = α ∨ β .
3. If ϕ = EXα, then ∃t ∈ E P [s] ⊆ E P ′ [s] such that (M, P), t |� α. Therefore, by IH, (M′, P ′), t |� α. Thus, (M′, P ′),

s |� EXα.
4. If ϕ = AXα, then ∀t ∈ A P [s] ⊇ A P ′ [s], (M, P), t |� α. Therefore, by IH, ∀t ∈ A P ′ [s], (M′, P ′), t |� α. Thus, (M′, P ′),

s |� AXα. �
Next, we show in three steps that Modif and Modif ∗ are sound. First, given ϕ ∈ Σ-XCTL, (M, P) ∈ KPΣ , and S ′ ⊆ SM ,

we show that Modif ∗ is conditionally sound: assuming that Modif is sound for ϕ and (M, P), we show that Modif ∗ is
sound by induction on |S ′|. Second, using the conditional soundness of Modif ∗ , we show that Modif is sound by induction
on ϕ . Finally, as a corollary, we obtain the soundness of Modif ∗ .

Theorem A.6 (Conditional soundness of Modif ∗). Let (M, P) ∈ KPΣ and ϕ ∈ Σ-XCTL such that

∀s ∈ SM, if
(
M′, P ′) ∈ Modif

(
(M, P), s,ϕ

)
then

(
M′, P ′), s |� ϕ (A.1)

Then ∀S ′ ⊆ SM , if (M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ) then (M′, P ′), S ′ |� ϕ .

Proof. Induction on |S ′|.
Basis. If |S ′| = 0, then S ′ = ∅. Therefore, (M′, P ′), S ′ |� ϕ .
Induction. Suppose 0 < m ∈N and assume that

|S ′| < m ⇒ ((
M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ

) ⇒ (
M′, P ′), S ′ |� ϕ

)
(A.2)

We show that if |S ′| = m and (M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ), then (M′, P ′), S ′ |� ϕ .
Since |S ′| = m > 0, S ′ �= ∅. Thus, by Definition 3.4, if (M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ), then ∃t ∈ SM and ∃(Mt , Pt) ∈

Modif ((M, P), t,ϕ), such that (M′, P ′) ∈ Modif ∗((Mt , Pt), S ′ − {t},ϕ). By (A.2), (M′, P ′), S ′ − {t} |� ϕ and, by (A.1),
(Mt , Pt), t |� ϕ . Besides, by Theorem A.4, P ′ � Pt and Pt � P . Thus, P ′ � P and (M′, P ′), t |� ϕ . Hence, (M′, P ′), S ′ |� ϕ . �
Theorem A.7 (Soundness of Modif). For all ϕ ∈ Σ-XCTL, (M, P) ∈ KPΣ , and s ∈ SM: (M′, P ′) ∈ Modif ((M, P), s,ϕ) ⇒
(M′, P ′), s |� ϕ .

Proof. Induction on the structure of ϕ .
Let (M, P) ∈ KPΣ , s ∈ SM , and suppose (M′, P ′) ∈ Modif ((M, P), s,ϕ).
Basis.

1. Cases ϕ = F and ϕ = T are trivial.
2. If ϕ = �, we have two cases: � ∈ L P [s] and � /∈ L P [s].

If � ∈ L P [s], then Modif ((M, P), s, �) = ∅.
If � /∈ L P [s], then Modif ((M, P), s, �) uses Lu to generate exactly one model, (M′, P ′), by adding � to the protected
labels of s. Thus, � ∈ L P ′

(s), (M′, P ′), s |� �, and ∀s ∈ SM , Q (s, �).
3. If ϕ = OD� n, then ∃S ′ ⊆ A P [s] such that E P [s] ⊆ S ′ �= ∅, |S ′| � n, and (M′, P ′) = Tu∀((M, P), s, S ′). Therefore, by the

definition of Tu∀ , A P ′ [s] ⊆ S ′ . Thus, |A P ′ [s]| � |S ′| � n and (M′, P ′), s |� OD� n.
4. The case ϕ = OD> n is similar to the case ϕ = OD� n.

Induction. Let IH be the induction hypothesis, i.e., IH states that the theorem is true for ϕ = α,β .

1. If ϕ = α ∨ β , then, w.o.l.g. (M′, P ′) ∈ Modif ((M, P), s,α). By IH, (M′, P ′), s |� α. Therefore, (M′, P ′), s |� α ∨ β .
2. If ϕ = α ∧ β , then ∃(Mα, Pα) ∈ Modif ((M, P), s,α) such that

(M′, P ′) ∈ Modif ((Mα, Pα), s, β).
By IH, (Mα, Pα), s |� α and (M′, P ′), s |� β . Since P ′ � Pα , by Theorem A.5, (M′, P ′), s |� α. Therefore, (M′, P ′),
s |� α ∧ β .

70 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
3. If ϕ = EXα, then ∃t ∈ A P [s] such that
(M′, P ′) ∈ Modif (T+

∃ ((M, P), s, t), t,α).
By IH, (M′, P ′), t |� α. Besides, if (Mt , Pt) = T+

∃ ((M, P), s, t), then t ∈ E Pt [s], and by Theorem A.4 P ′ � Pt . Thus,

t ∈ E P ′ [s] and (M′, P ′), t |� α. Therefore, (M′, P ′), s |� EXα.
4. If ϕ = AXα, then ∃S ′ ⊆ A P [s] such that E P [s] ⊆ S ′ �= ∅ and (M′, P ′) ∈ Modif ∗((MS ′ , P S ′), S ′,α), where (MS ′ , P S ′) =

Tu∀((M, P), s, S ′).
By IH, ∀s ∈ SM , if (M′′, P ′′) ∈ Modif ((MS ′ , P S ′), s,α) then
(M′′, P ′′), s |� α.
Therefore, by Theorem A.6, (M′, P ′), S ′ |� α. By the definition of P S ′ , we have S ′ = A P S′ [s], and, by Theorem A.4,
P ′ � P S ′ . Thus, S ′ = A P S′ [s] ⊇ A P ′ [s]. Since (M′, P ′), S ′ |� α and A P ′ [s] ⊆ S ′ , (M′, P ′), A P ′ [s] |� α. Therefore, (M′, P ′),
s |� AXα. �

Corollary A.8 (Soundness of Modif ∗). For all ϕ ∈ Σ-XCTL, (M, P) ∈ KPΣ , and S ′ ⊆ SM: (M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ) ⇒
(M′, P ′), S ′ |� ϕ .

Proof. Let ϕ ∈ Σ-XCTL, (M, P) ∈ KPΣ , S ′ ⊆ SM , and suppose (M′, P ′) ∈ Modif ∗((M, P), S ′,ϕ). By Theorem A.7,
∀s ∈ SM , (M′′, P ′′) ∈ Modif ((M, P), s,ϕ) ⇒ (M′′, P ′′), s |� ϕ .
Therefore, by Theorem A.6, (M′, P ′), S ′ |� ϕ . �
To prove completeness of Modif , it is important to know whether there is a modification of (M, P) for ϕ , i.e., whether

(M, P) is “ϕ-modifiable”.

Definition A.9 (ϕ-modifiable). Let (M, P) ∈ KPΣ , s ∈ SM , and ϕ ∈ Σ-CTL. (M, P) is ϕ-modifiable at s if Modif ((M, P), s,ϕ)

�= ∅.

In addition, we need to prove that if ϕ is “satisfiable”, then XUpdprot produces at least one result. Thus, we need to
clarify the notion of “satisfiable”.

Definition A.10 (Satisfiable). Let ϕ ∈ Σ-CTL, P ∈ PΣ , and s ∈ SΣ .

1. ϕ is P -satisfiable at s if ∃ (M′, P ′) ∈ KPΣ. (M′, P ′), s |� ϕ & P ′ � P .
2. ϕ is KΣ -satisfiable at s if ∃ M′ ∈ KΣ. M′, s |� ϕ .

To state completeness of Modif it is not enough to reverse the implication of Theorem A.7. We analyze two wrong
statements of completeness.

First, the statement
(1) (M′, P ′), s |� ϕ ⇒ (M′, P ′) ∈ Modif ((M, P), s,ϕ) is not true.
For example, if �1 ∈ L P (s) and �1 ∈ L P ′

(s), then (M′, P ′) |� �1 but (M′, P ′) /∈ Modif ((M, P), s, �1) = ∅.
Second, a weaker statement,
(2) (M′, P ′), s |� ϕ and P ′ � P ⇒ (M′, P ′) ∈ Modif ((M, P), s,ϕ), is not true either.
For example, if �1, �2 /∈ L P (s), and (M′, P ′) is the result of adding �1 and �2 to (M, P), i.e., (M�1 , P�1) =

Lu((M, P), s, �1), and (M′, P ′) = Lu((M�1 , P�1), s, �2), then
(M′, P ′) |� �1 and P ′ � P
but (M′, P ′) /∈ Modif ((M, P), s, �1) = {(M�1 , P�1)}.
According to our purposes (e.g., Corollary A.15), a more appropriate statement for completeness of Modif is as in The-

orem A.12. To prove this theorem, we follow three steps. First, we show that Modif ∗ is conditionally complete: assuming
that Modif is complete for given ϕ and (M, P), we show that Modif ∗ is complete by induction on |S ′|. Second, using the
conditional completeness of Modif ∗ , we show that Modif is complete by induction on ϕ . Finally, as a corollary, we obtain
the completeness of Modif ∗ .

Theorem A.11 (Conditional completeness of Modif ∗). Let (M, P) ∈ KPΣ and ϕ ∈ Σ-XCTL such that

∀s ∈ SM,
(∃(

M′, P ′) ∈ KPΣ.
(
M′, P ′), s |� ϕ ∧ P ′ � P

) ⇒(∃(Ms,ϕ, P s,ϕ) ∈ Modif
(
(M, P), s,ϕ

)
. P ′ � P s,ϕ

)
(A.3)

Then ∀S ′ ⊆ SM , if ∃(M′, P ′) ∈ KPΣ such that (M′, P ′), S ′ |� ϕ and P ′ � P , then ∃(MS ′,ϕ, P S ′,ϕ) ∈ Modif ∗((M, P), S ′,ϕ) such
that P ′ � P S ′,ϕ .

Proof. Induction on |S ′|.

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 71
Basis. If |S ′| = 0, then S ′ = ∅ and Modif ∗((M, P),∅,ϕ) = {(M, P)}. Therefore, if we take (MS ′,ϕ, P S ′,ϕ) = (M, P) ∈
Modif ∗((M, P),∅,ϕ), then P ′ � P = P S ′,ϕ .

Induction. Suppose 0 < m ∈N and assume that(
S ′ ⊆ SM ∧ |S ′| < m

) ⇒((∃(
M′, P ′) ∈ KPΣ.

(
M′, P ′), S ′ |� ϕ ∧ P ′ � P

) ⇒(∃(MS ′,ϕ, P S ′,ϕ) ∈ Modif ∗((M, P), S ′,ϕ
)
. P ′ � P S ′,ϕ

))
(A.4)

We show that if S ′ ⊆ SM , |S ′| = m, and ∃(M′, P ′) ∈ KPΣ such that (M′, P ′), S ′ |� ϕ and P ′ � P , then ∃(MS ′,ϕ, P S ′,ϕ) ∈
Modif ∗((M, P), S ′,ϕ) such that P ′ � P S ′,ϕ .

Let S ′ ⊆ SM such that |S ′| = m > 0. Suppose (M′, P ′) ∈ KPΣ is such that (1) (M′, P ′), S ′ |� ϕ and (2) P ′ � P .
Since |S ′| > 0, S ′ �= ∅. Let t ∈ S ′ and S ′

t = S ′ − {t}.
On the one hand, by (1) and (2), (M′, P ′), t |� ϕ and P ′ � P . Thus, by (A.3), there exists (Mt,ϕ, Pt,ϕ) ∈ Modif ((M, P),

s,ϕ) such that P ′ � Pt,ϕ . On the other hand, by (1), (M′, P ′), S ′
t |� ϕ and P ′ � Pt,ϕ . Thus, by (A.4), ∃(MS ′

t ,ϕ
, P S ′

t ,ϕ
) ∈

Modif ∗((Mt,ϕ, Pt,ϕ), S ′
t ,ϕ) such that P ′ � P S ′

t ,ϕ
.

Hence, by using S ′
t = S ′ − {t} and Definition 3.4, (MS ′

t ,ϕ
, P S ′

t ,ϕ
) ∈ Modif ∗((M, P), S ′,ϕ) and P ′ � P S ′,ϕ . �

Theorem A.12 (Completeness of Modif). For all ϕ ∈ Σ-XCTL, (M, P) ∈ KPΣ , and s ∈ SM: if ∃(M′, P ′) ∈ KPΣ such that
(M′, P ′), s |� ϕ and P ′ � P then ∃(Ms,ϕ, P s,ϕ) ∈ Modif ((M, P), s,ϕ) such that P ′ � P s,ϕ .

Proof. Induction on the structure of ϕ .
Let (M, P) ∈ KPΣ , s ∈ SM , and suppose (M, P) ∈ KPΣ is such that

(
M′, P ′), s |� ϕ (A.5)

and P ′ � P (A.6)

Basis.

1. If ϕ = F, then �(M′, P ′) ∈ KPΣ such that (M′, P ′), s |� F and P ′ � P .
2. If ϕ = T, take (Ms,T, P s,T) = (M, P) ∈ Modif ((M, P), s,T), i.e. (Ms,T, P s,T) = {(M, P)}. Thus, P ′ � P = P s,T .
3. If ϕ = �, then, by (A.5), � ∈ L P ′

(s). Therefore, � /∈ L P ′
(s) and, by (A.6), � /∈ L P (s). Let (Ms,�, P s,�) = Lu((M, P), s, �), the

only element of Modif ((M, P), s, �). By Theorem A.3, (Ms,�, P s,�) ∈ KPΣ (and P s,� � P). Besides, P ′ � P , E Ps,� = E P ,
A Ps,� = A P , and L Ps,� = L P [s ⊕ �]; therefore P ′ � P s,� . Hence, (Ms,�, P s,�) ∈ Modif ((M, P), s, �) and P ′ � P s,� .

4. Cases ϕ = OD� n and ϕ = OD> n are similar to the case ϕ = AXα (see below).

Induction. Let IH be the induction hypothesis, i.e., IH states that the theorem is true for ϕ = α and ϕ = β .

1. ϕ = α ∨ β . By (A.5), and w.l.o.g. (M′, P ′), s |� α. Thus, by IH, ∃(Ms,α, P s,α) ∈ Modif ((M, P), s,α) such that P ′ � P s,α .
Hence, (Ms,α, P s,α) ∈ Modif ((M, P), s,α ∨ β) and P ′ � P s,α .

2. ϕ = α ∧ β . By (A.5), (M′, P ′), s |� α. Thus, by IH, ∃(Ms,α, P s,α) ∈ Modif ((M, P), s,α) such that P ′ � P s,α .
Therefore, P ′ � P s,α and, by (A.5), (M′, P ′), s |� β . Thus, by applying IH with (M, P) = (Ms,α, P s,α) and ϕ = β , we
have that ∃(Ms,β , P s,β) ∈ Modif ((Ms,α, P s,α), s, β) such that P ′ � P s,β . Hence, (Ms,β , P s,β) ∈ Modif ((M, P), s,α ∧ β)

and P ′ � P s,β .
3. ϕ = EXα. By (A.5), ∃s′ ∈ E P ′ [s] such that (M′, P ′), s′ |� α. Let (Ms′ , P s′) = T+

∃ ((M, P), s, s′). Since s′ ∈ E P ′ [s],
by (A.6), P ′ � P s′ . Thus, by applying IH with (M, P) = (Ms′ , P s′) and ϕ = α, we have that ∃(Ms′,α, P s′,α) ∈
Modif ((Ms′ , P s′), s′,α) such that P ′ � P s′,α . Thus, s′ ∈ E P ′ [s] ⊆ A P ′ [s] and
(Ms′,α, P s′,α) ∈ Modif (T+

∃ ((M, P), s, s′), s′,α).
Therefore, (Ms′,α, P s′,α) ∈ Modif ((M, P), s,EXα) and P ′ � P s′,α .

4. ϕ = AXα. By (A.5), ∀s′ ∈ A P ′ [s], (M′, P ′), s′ |� α. Let S ′ = A P ′ [s] and (MS ′ , P S ′) = Tu∀((M, P), s, S ′). Since S ′ ⊆ A P ′ [s],
by (A.6), P ′ � P S ′ . Thus, by applying IH with (M, P) = (MS ′ , P S ′) and ϕ = α, we have that ∃(MS ′,α, P S ′,α) ∈
Modif ∗((MS ′ , P S ′), S ′,α) such that P ′ � P S ′,α . Since S ′ = A P ′ [s] ⊇ E P ′ [s] and A P ′ [s] ⊇ RM′ [s] �= ∅, we have S ′ ⊆ A P ′ [s]
and E P ′ [s] ⊆ S ′ �= ∅. Thus, S ′ ⊆ A P ′ [s], E P ′ [s] ⊆ S ′ �= ∅, and (MS ′,α, P S ′,α) ∈ Modif ∗(Tu∀((M, P), s, S ′), S ′,α). Therefore,
(MS ′,α, P S ′,α) ∈ Modif ((M, P), s,AXα) and P ′ � P S ′,α . �

Corollary A.13 (Completeness of Modif ∗). For all ϕ ∈ Σ-XCTL, (M, P) ∈ KPΣ , and S ′ ⊆ SM: if ∃(M′, P ′) ∈ KPΣ such that
(M′, P ′), S ′ |� ϕ and P ′ � P , then ∃(MS ′,ϕ, P S ′,ϕ) ∈ Modif ∗((M, P), S ′,ϕ) such that P ′ � P S ′,ϕ .

Proof. Let ϕ ∈ Σ-XCTL, (M, P) ∈ KPΣ , S ′ ⊆ SM , and suppose (M′, P ′) ∈ KPΣ is such that (1) (M′, P ′), S ′ |� ϕ and
(2) P ′ � P .

72 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
By Theorem A.12, ∀s ∈ SM , if ∃(M′, P ′) ∈ KPΣ such that (M′, P ′), s |� ϕ and P ′ � P then ∃(Ms,ϕ, P s,ϕ) ∈
Modif ((M, P), s,ϕ) such that P ′ � P s,ϕ . Therefore, by Theorem A.11, if ∃(M′, P ′) ∈ KPΣ such that (M′, P ′), S ′ |� ϕ and
P ′ � P , then ∃(MS ′,ϕ, P S ′,ϕ) ∈ Modif ∗((M, P), S ′,ϕ) such that P ′ � P S ′,ϕ . Therefore, by (1) and (2), ∃(MS ′,ϕ, P S ′,ϕ) ∈
Modif ∗((M, P), S ′,ϕ) such that P ′ � P S ′,ϕ . �

Hence, as stated in the following theorem, “ϕ is P -satisfiable” is equivalent to “(M, P) is ϕ-modifiable”.

Theorem A.14 (P -satisfiable ≈ ϕ-modifiable). Let (M, P) ∈ KPΣ and s ∈ SM . If ϕ ∈ Σ-XCTL, then ϕ is P -satisfiable at s iff (M, P)

is ϕ-modifiable at s.

Proof. (⇒). If ϕ is P -satisfiable at s, then there is (M′, P ′) ∈ KPΣ such that (M′, P ′), s |� ϕ and P ′ � P . Therefore, by
Theorem A.12, there exists (Mϕ, Pϕ) ∈ Modif ((M, P), s,ϕ) such that P ′ � Pϕ .

Thus, Modif ((M, P), s,ϕ) �= ∅, and (M, P) is ϕ-modifiable at s.
(⇐). If (M, P) is ϕ-modifiable at s, then Modif ((M, P), s,ϕ) �= ∅. Let (M′, P ′) ∈ Modif ((M, P), s,ϕ). By Theorem A.7,

(M′, P ′), s |� ϕ , and, by Theorem A.4, P ′ � P . Therefore, ϕ is P -satisfiable at s. �
Finally, completeness of XUpdprot is a consequence of the next corollary.

Corollary A.15 (KΣ -satisfiable ≈ ϕ-modifiable). For all ϕ ∈ Σ-XCTL, s ∈ SΣ , and M ∈ KΣ : ϕ is KΣ -satisfiable at s iff (M, P⊥) is
ϕ-modifiable at s.

Proof. (⇒). Let M′ ∈ KΣ such that M′, s |� ϕ . Then, by Definition 2.6, (M′, PM′), s |� ϕ . Besides, PM′ � P⊥ . Therefore,
ϕ is P⊥-satisfiable at s and, by Theorem A.14, (M, P⊥) is ϕ-modifiable at s.

(⇐). If (M′, P ′) ∈ Modif ((M, P⊥), s,ϕ), then, by Theorem A.7, (M′, P ′), s |� ϕ .
Besides, PM′ � P ′ . Hence, (M′, PM′), s |� ϕ and, by Definition 2.6, M′, s |� ϕ . Therefore, ϕ is KΣ -satisfiable at s. �
Note that pseudo-code of XUpdprot is an intuitive implementation of Modif . If we assume that models computed

by XUpdprot are exactly modifications of the input model, i.e., for all (M, P) ∈ KPΣ , s ∈ SM , and ϕ ∈ Σ-XCTL,
XUpdprot[(M, P), s,ϕ] = Modif ((M, P), s,ϕ), then the following theorem formalizes, in a sense, that XUpdprot is sound
and complete.

Theorem A.16 (XUpdprot is sound and complete). If for all (M, P) ∈ KPΣ , s ∈ SM , and ϕ ∈ Σ-XCTL, XUpdprot[(M, P), s,ϕ] =
Modif ((M, P), s,ϕ), then for all M ∈ KΣ , s ∈ SM , and ϕ ∈ Σ-XCTL:

1. If (M′, P ′) ∈ XUpdprot[(M, P⊥), s,ϕ], then (M′, P ′), s |� ϕ .
2. If ϕ is KΣ -satisfiable at s, then XUpdprot[(M, P⊥), s,ϕ] �= ∅.

Proof. (1). If (M′, P ′) ∈ XUpdprot[(M, P⊥), s,ϕ] = Modif ((M, P), s,ϕ), then, by Theorem A.7, (M′, P ′), s |� ϕ . Therefore,
XUpdprot is sound.

(2). If ϕ is KΣ -satisfiable at s, then, by Corollary A.15, (M, P⊥) is ϕ-modifiable at s. Therefore, XUpdprot[(M, P⊥), s,ϕ] =
Modif ((M, P⊥), s,ϕ) �= ∅. �
Appendix B. Complexity

This section offers a complexity analysis of our model-update method. We measure the complexity of Updprot with
respect to the size of the input formula and the size of the input model. For Σ-CTL formulas, we use the size defined in
Section 2.

To define the size of a model in KPΣ , we note that it is common to consider that the states of a model are vectors
whose components correspond to variable values. In such case, the number of states is exponential with respect to the
number of variables and therefore the size of a model may be estimated by considering only |S × S| or just |S|. In general,
however, it is possible that the number of variables is greater than the number of states. In addition, some parts of Updprot

depend not only on the states of input model but also on the model transitions. Therefore, we define the size of a model as
follows.

Definition B.1 (Size of protected models). The size of a protected model (M, P) ∈ KPΣ is defined by |(M, P)| =
max{|Lit(V Σ)|, |SΣ × SΣ |}.

Note that all (M, P) ∈ KPΣ have the same size. Besides, update operations in the execution of XUpdprot((M, P), s,ϕ)

preserve Σ . Therefore, we use m = |(M, P)| as a fixed parameter in the next complexity analysis.

M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74 73
Definition B.2 (Number of steps). Let (M, P) ∈ KPΣ , s ∈ SM , and ϕ ∈ CTLΣ . If m = |(M, P)|, n = |ϕ|, and ϕ ∈ XCTLΣ , we use
Tm(n) to denote the number of steps required in a nondeterministic execution of XUpdprot((M, P), s,ϕ).

If ϕ ∈ CTLΣ − XCTLΣ , we use T ′
m(n) to denote the number of steps required in a nondeterministic execution of

Updprot((M, P), s,ϕ).

We use Tm(n) to analyze the worst-case time complexity of XUpdprot .

Theorem B.3 (Complexity of XUpdprot). Let (M, P) ∈ KPΣ , s ∈ SM , and ϕ ∈ XCTLΣ . If m = |(M, P)|, and n = |ϕ|, then Tm(n) is
O(mn).

Proof. We analyze Tm(n) according to the structure of ϕ .

1. If ϕ = F or ϕ = T, then, by lines (3–4), XUpdprot((M, P), s,ϕ) fails or returns (M, P). In both cases the execution of
XUpdprot((M, P), s,ϕ) requires at most one step. Therefore, if n = |F| = |T|, Tm(n) = 1.

2. If ϕ = �, then, since |L P (s)| � |Lit(V Σ)| � m, computing the test � ∈ L P (s) in line (5) requires at most m steps.
Next, to compute Lu((M, P), s, �) in line (6), we need to calculate LM[s ⊕ �] and L P [s ⊕ �]. Thus, to compute LM[s ⊕ �]
we search for LM(s) in LM , and we modify LM(s) by adding � to LM(s) and removing � from LM(s).
The search for LM(s) in LM can be done in at most m steps because |SM| � m. The addition (without duplication) of �,
and the removal of �, can be done in at most 2m steps because |LM(s)| � |Lit(V Σ)| � m. Therefore, the computation of
LM[s ⊕ �] requires at most 3m steps.
Analogously, the computation of L P [s ⊕ �] requires at most 3m steps. Hence, XUpdprot((M, P), s, �) needs at most
m + 3m + 3m steps.
Therefore, if n = |�|, Tm(n) = 7m.

3. If ϕ = α ∨ β , then, by lines (7–8), after guessing δ ∈ {α,β} in one step, XUpdprot((M, P), s,α ∨ β) makes a recursive
call to
XUpdprot((M, P), s, δ).
Therefore, if δ is the guess that requires more execution steps, the number of steps required by XUpdprot((M, P), s,
α ∨ β) is 1 plus the number of steps needed by XUpdprot((M, P), s, δ).
Thus, if n = |α ∨ β|, Tm(n) = 1 + Tm(n − 1).

4. If ϕ = α ∧ β , then lines (9–10) amount to compute
XUpdprot((M′, P ′), s, β)

after guessing (M′, P ′) ∈ XUpdprot((M, P), s,α).
Therefore, the number of steps required to compute
XUpdprot((M, P), s,α ∧ β) is given by the sum of: Tm(n − 1) steps for computing XUpdprot((M, P), s,α), 1 step for
guessing (M′, P ′) ∈ XUpdprot((M, P), s,α), and Tm(n − 1) steps for computing
XUpdprot((M′, P ′), s, β).
Thus, if n = |α ∧ β|, Tm(n) = 1 + 2Tm(n − 1).

5. If ϕ = EXα, then line (11) guesses s′ ∈ A P [s] in one step.
Now, to compute T+

∃ ((M, P), s, s′) in line (12), we have to add (s, s′) to RM and protect (s, s′) in E P .
Line (12) adds transition (s, s′) to (M, P) in 2m steps and makes a recursive call to XUpdprot((M′′, P ′′), s′,α).
Therefore, the number of steps required to compute
XUpdprot((M, P), s,EXα) is 1 plus the sum of 2m and the number of steps needed to compute XUpdprot((M′′, P ′′),
s′,α).
Thus, if n = |EXα|, Tm(n) = 1 + 2m + Tm(n − 1).

6. If ϕ = AXα, then line (13) guesses S ′ ∈ {X ⊆ A P [s] | E P [s] ⊆ X and X �= ∅} in one step.
Now, to compute Tu∀((M, P), s, S ′) in line (14), we need to calculate Tu(M, s, S ′) and (A P − s × (A P [s] − S ′)).
The computation of Tu(M, s, S ′) requires at most 3m steps: m steps to compute RM[s]; m steps to remove s × RM[s]
from RM; and m steps to add s × S ′ to RM .
The computation of (A P −s×(A P [s]− S ′)) requires at most 3m steps: m to compute s in A P [s]; m to compute A P [s]− S ′;
and m to remove s × (A P [s] − S ′) from A P .
Therefore, the computation of Tu∀((M, P), s, S ′) in line (14) requires at most 6m steps.
Then, the call to XUpd

∗
prot(Tu∀((M, P), s, S ′), S ′,α) in line (14) corresponds to |S ′| consecutive calls to XUpdprot(, s′,α)

with all s′ ∈ S ′ . Since |S ′| � m and |α| = n − 1, the maximum number of steps required by all these calls to XUpdprot is
mTm(n − 1).
Thus, if n = |AXα|, Tm(n) = 1 + 6m + mTm(n − 1).

7. If ϕ = OD� j, where � ∈ {�,>}, then line (15) guesses S ′ in one step. Analogously to the case ϕ = AXα, the computa-
tion of Tu

Q ((M, P), s, S ′) in line (17) requires at most 6m steps.
Therefore, if n = |OD� j|, Tm(n) = 1 + 6m.

The worst case of XUpdprot((M, P), s,ϕ) is when ϕ = AXα. Therefore, a lower bound for the worst-case complexity of
XUpdprot is given by a solution of the recurrence relation defined by Tm(n) = 1+6m +mTm(n −1), if n > 1, and Tm(1) = 7m.

74 M. Carrillo, D.A. Rosenblueth / Artificial Intelligence 211 (2014) 51–74
The factor m in Tm(1) and the term mTm(n − 1) in Tm(n) imply that a solution of this recurrence relation has a factor mn .
Therefore, the worst-case time complexity of XUpdprot is O(mn). �

The above theorem can be extended to formulas in CTLΣ .

Theorem B.4 (Complexity of Updprot). Let (M, P) ∈ KPΣ , s ∈ SM , and ϕ ∈ CTLΣ − XCTLΣ . If m = |(M, P)|, and n = |ϕ|, then
T ′

m(n) is O(mn+1).

Proof. Let ψ be a subformula of ϕ such that ψ ∈ CTL has the form E[α U β] or A[α U β] or E[α R β] or A[α R β].
The evaluation of Updprot((M, P), s,ψ) is done replacing ψ by the corresponding fixed-point formula ψfix . On the one

hand, the size of ψfix is linear w.r.t. the size of ψ , |ψfix| = c∗|ψ | for some c ∈N. On the other hand, the application of Updprot

to ψfix implies the recursive application of XUpdprot to ψ at a state s′ , where s′ is a successor of s (obtained from RM with
cost m). In each recursive call to XUpdprot the pair (ψ, s′) is added to a list of visited states with the formula ψ and XUpdprot

continues in this manner provided that the pair (ψ, s′) does not represent a visited state with ψ . Thus, the maximum
number of recursive calls to XUpdprot is bounded by m. Therefore, by Theorem B.3, T ′

m(n) � m∗(m+ Tm(n)) � m2 +m∗d∗mn ,
for some d ∈N. Hence, T ′

m(n) � k ∗ mn+1, for some k ∈N, and T ′
m(n) is O(mn+1). �

References

[1] F. Buccafurri, T. Eiter, G. Gottlob, N. Leone, Enhancing model checking in verification by AI techniques, Artif. Intell. 112 (1999) 57–104.
[2] F. Buccafurri, T. Eiter, G. Gottlob, N. Leone, On ACTL formulas having linear counterexamples, J. Comput. Syst. Sci. 62 (2001) 463–515.
[3] L. Calzone, N. Chabrier-Rivier, F. Fages, S. Soliman, Machine learning biochemical networks from temporal logic properties, in: C. Priami, G.D. Plotkin

(Eds.), Transactions on Computational Systems Biology, in: Lecture Notes in Computer Science, vol. 4220, Springer, 2006, pp. 68–94.
[4] M. Carrillo, D.A. Rosenblueth, A method for CTL model update, representing Kripke structures as “table systems”, Int. J. Pure Appl. Math. 52 (2009)

401–431.
[5] M. Carrillo, D.A. Rosenblueth, Nondeterministic update of CTL models by preserving satisfaction through protections, in: T. Bultan, P.A. Hsiung (Eds.),

Automated Technology for Verification and Analysis (ATVA 2011), in: Lecture Notes in Computer Science, vol. 6996, Springer, Taipei, Taiwan, 2011,
pp. 60–74.

[6] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, V. Schächter, Modeling and querying biomolecular interaction networks, Theor. Comput. Sci. 325
(2004) 25–44.

[7] G. Chatzieleftheriou, B. Bonakdarpour, S.A. Smolka, P. Katsaros, Abstract model repair, in: A.E. Goodloe, S. Person (Eds.), Proc. 4th NASA Formal Methods
(NFM 2012), in: Lecture Notes in Computer Science, vol. 7226, Springer, 2012, pp. 341–355.

[8] A. Cimatti, E.M. Clarke, F. Giunchiglia, M. Roveri, NuSMV: a new Symbolic Model Verifier, in: N. Halbwachs, D. Peled (Eds.), Proc. Eleventh Conference
on Computer-Aided Verification (CAV ’99), in: Lecture Notes in Computer Science, vol. 1633, Springer, 1999, pp. 495–499.

[9] E. Clarke, S. Jha, Y. Lu, H. Veith, Tree-like counterexamples in model checking, in: 17th IEEE Symposium on Logic in Computer Science (LICS 2002),
Springer, 2002, pp. 19–29.

[10] E.M. Clarke, O. Grumberg, D.E. Long, Verification tools for finite-state concurrent systems, in: A Decade of Concurrency, Reflections and Perspectives,
REX School/Symposium, Springer-Verlag, London, UK, 1994, pp. 124–175.

[11] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press, 1999.
[12] Y. Ding, Model update for system modifications, Ph.D. thesis, School of Computing and Mathematics, University of Western Sydney, Australia, 2007.
[13] Y. Ding, D. Hemer, An optimised algorithm to tackle the model explosion problem in CTL model update, in: B.T. Zhang, M.A. Orgun (Eds.), 11th Pacific

Rim International Conference on Artificial Intelligence (PRICAI 2010), in: Lecture Notes in Artificial Intelligence, vol. 6230, Springer, 2010, pp. 589–594.
[14] T. Eiter, E. Erdem, M. Fink, J. Senko, Updating action domain descriptions, Artif. Intell. 174 (2010) 1172–1221.
[15] E.A. Emerson, E.M. Clarke, Using branching time temporal logic to synthesize synchronization skeletons, Sci. Comput. Program. 2 (1982) 241–266.
[16] E.A. Emerson, J.Y. Halpern, Decision procedures and expressiveness in the temporal logic of branching time, J. Comput. Syst. Sci. 30 (1985) 1–24.
[17] P.T. Guerra, R. Wassermann, Revision of CTL models, in: Ibero-American Conference on Artificial Intelligence (IBERAMIA 2010), in: Lecture Notes in

Artificial Intelligence, vol. 6433, Springer, 2010, pp. 153–162.
[18] B. Jobstmann, S. Staber, A. Griesmayer, R. Bloem, Finding and fixing faults, J. Comput. Syst. Sci. 78 (2012) 441–460.
[19] M. Kelly, F. Pu, Y. Zhang, Y. Zhou, ACTL local model update with constraints, in: Proc. 14th Knowledge-Based and Intelligent Information and Engineering

Systems, Part IV (KES 2010), in: Lecture Notes in Artificial Intelligence, vol. 6279, Springer, 2010, pp. 135–144.
[20] M. Kelly, Y. Zhang, Local model update with an application to sliding window protocol, in: Proc. 14th Knowledge-Based and Intelligent Information

and Engineering Systems, Part IV (KES 2010), in: Lecture Notes in Artificial Intelligence, vol. 6279, Springer, 2010, pp. 11–21.
[21] J.M. Wing, M. Vaziri-Farahani, A case study in model checking software, Sci. Comput. Program. 28 (1997) 273–299.
[22] Y. Zhang, Y. Ding, CTL model update for system modifications, J. Artif. Intell. Res. 31 (2008) 113–155.

http://refhub.elsevier.com/S0004-3702(14)00022-8/bib62756363616675727269263A3939s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib62756363616675727269263A32303031s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63616C7A6F6E65263A303662s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63616C7A6F6E65263A303662s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63617272696C6C6F3A726F73656E626C756574683A3039s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63617272696C6C6F3A726F73656E626C756574683A3039s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63617272696C6C6F3A726F73656E626C756574683A3131s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63617272696C6C6F3A726F73656E626C756574683A3131s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63617272696C6C6F3A726F73656E626C756574683A3131s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6368616272696572263A3034s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6368616272696572263A3034s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib636861747A69656C656674686572696F75263A3132s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib636861747A69656C656674686572696F75263A3132s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63696D61747469263A3939s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib63696D61747469263A3939s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib636C61726B65263A3032s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib636C61726B65263A3032s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib636C61726B65263A3934s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib636C61726B65263A3934s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib636C61726B65263A3939s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib64696E673A3037s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib64696E673A68656D65723A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib64696E673A68656D65723A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6569746572263A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib656D6572736F6E3A636C61726B653A3832s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib656D6572736F6E3A68616C7065726E3A3835s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6775657272613A7761737365726D616E6E3A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6775657272613A7761737365726D616E6E3A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6A6F6273746D616E6E263A3132s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6B656C6C79263A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6B656C6C79263A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6B656C6C793A7A68616E673A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib6B656C6C793A7A68616E673A3130s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib77696E673A76617A6972692D6661726168616E693A3937s1
http://refhub.elsevier.com/S0004-3702(14)00022-8/bib7A68616E673A64696E673A3038s1

	CTL update of Kripke models through protections
	1 Introduction
	2 Technical preliminaries
	3 CTL update algorithms
	3.1 Nondeterministic pseudo-code
	3.2 Modiﬁcation of models
	3.3 A direct update algorithm for Σ-XCTL
	3.4 An algorithm for updating protected models
	3.5 Model update for Σ-CTL and addition of states

	4 Heuristics and search strategies
	4.1 Ordering nondeterministic choices of states
	4.2 Ordering nondeterministic choices of sets of states
	4.3 Ordering nondeterministic choices of formulas
	4.4 Limiting the number of changes

	5 Behavior of Updprot
	5.1 Synthesizing a model of the mutual exclusion problem
	5.2 Updating a microwave oven model
	5.3 Updating the model of a counter
	5.4 Updprot applied to random models and formulas
	5.5 Updprot applied to models with few states

	6 Related work
	6.1 Structure of counterexamples
	6.2 Other approaches to CTL model update
	6.2.1 Buccafurri et al.
	6.2.2 Calzone et al.
	6.2.3 Zhang and Ding
	6.2.4 Carrillo and Rosenblueth
	6.2.5 Ding and Hemer
	6.2.6 Kelly et al.
	6.2.7 Guerra and Wassermann
	6.2.8 Chatzieleftheriou et al.

	7 Conclusions
	Acknowledgments
	Appendix A Soundness and completeness
	Appendix B Complexity
	References

