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Threshold driven contagion on 
weighted networks
Samuel Unicomb1, Gerardo Iñiguez  2,3 & Márton Karsai1

Weighted networks capture the structure of complex systems where interaction strength is meaningful. 
This information is essential to a large number of processes, such as threshold dynamics, where link 
weights reflect the amount of influence that neighbours have in determining a node's behaviour. 
Despite describing numerous cascading phenomena, such as neural firing or social contagion, the 
modelling of threshold dynamics on weighted networks has been largely overlooked. We fill this gap 
by studying a dynamical threshold model over synthetic and real weighted networks with numerical 
and analytical tools. We show that the time of cascade emergence depends non-monotonously on 
weight heterogeneities, which accelerate or decelerate the dynamics, and lead to non-trivial parameter 
spaces for various networks and weight distributions. Our methodology applies to arbitrary binary 
state processes and link properties, and may prove instrumental in understanding the role of edge 
heterogeneities in various natural and social phenomena.

Weighted networks provide meaningful representations of the architecture of a large number of complex systems 
where interacting entities, represented as nodes in a graph, are connected with links weighted by the strength of 
their interactions. Weighted networks are ubiquitous in biological1, ecological2, infrastructure3–5, social6–9, infor-
mation, and economic10,11 systems, just to mention a few. Their analysis has been in focus from the early stages 
of complex networks research12,13, with several measures14–16 and models17,18 introduced. These studies show that 
link weights in real networks are usually heterogeneous, may be correlated with the network structure6,19, and 
can even capture signed relationships20. More importantly, weights help to differentiate links of varying impor-
tance, influence, and role. On a microscopic level, weights identify the most relevant neighbours of a node21; on a 
network level, they indicate links with special roles or positions in the system6,19. Such information is crucial for 
dynamical processes evolving on weighted networks. Examples can be found in epidemiology, where important 
ties maintained by frequent interactions may enhance the spread of infection locally, while ties with infrequent 
interactions but located between densely connected parts of the network may suppress diffusion globally19,22. 
Link weights are also relevant in phenomena like random walks, spin models, synchronisation, evolutionary 
games, as well as cascading failures. Despite this, weighted networks have been less studied than their unweighted 
counterparts, especially for threshold driven processes, which play an essential role in systems of self-organised 
criticality23–25, epidemiology26, firing neurons27–29, or social contagion6,30.

In threshold driven processes, the state of an entity changes when the concentration of incoming stimuli or 
cumulating force reaches a certain threshold. Some typical examples are neural systems27,28, earthquakes31, and 
solar flares32,33, commonly identified as self-organised critical systems driven by integrate-and-fire mechanisms. 
Thresholds play a role in some epidemic diseases, such as tuberculosis and dysentery26, where infection requires 
the concentration of pathogens in an individual to overcome a threshold. Moreover, thresholds are associated 
with social contagion phenomena, where social influence from acquaintances may change the behaviour of an 
individual after reaching a cognitive limit. Studies of so-called complex contagion date back to Schelling, Axelrod, 
and Granovetter, but have recently attracted interest thanks to the seminal cascade model by Watts30, and also 
to the enormous amount of digital data on human behaviour collected to observe, analyse and model social 
contagion. In threshold models on networks links are usually considered unweighted, such that the stimuli or 
influence arriving from each neighbour contributes equally to reaching the behavioural threshold. Although this 
assumption simplifies their modelling, it does not lead to an accurate representation of real world dynamics. For 
example, in neural systems synaptic connections have weights that quantify the strength of incoming stimuli, 
and contribute unequally in bringing neurons to an excited state, as recognised recently in models of neural 
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population dynamics34. In social systems link weights are associated with tie strengths that quantify the social 
influence that individuals have on their peers. Measurement of tie strength is a long standing challenge, but it 
is generally accepted that social ties are not equal, as some are more influential than others on one’s decision 
making. Surprisingly, apart from some recent studies35–37, weights have been commonly overlooked in models of 
threshold driven phenomena.

Our aim is to close this gap by exploring the effect of weight heterogeneities on threshold driven contagion 
processes. We first study a dynamical variant of the Watts cascade model on a simple system, a random regular 
network with a bimodal weight distribution. We then provide an analytical solution of the dynamics, for arbitrary 
degrees and weights, together with numerical simulations and combinatorial arguments to show that the speed 
of spreading depends non-monotonously on the extent of weight heterogeneity and may drastically accelerate 
or decelerate as compared to the unweighted case, even for fixed thresholds. We also observe this effect under 
more realistic synthetic scenarios, such as scale-free networks and lognormal weight distributions, as well as in 
data-driven simulations over large-scale empirical weighted networks. Our contribution is a meaningful step 
forward in the largely unexplored modelling of dynamical processes with heterogeneous interactions, typical in 
neural systems and social contagion. Moreover, our results may have broader implications as our methodology 
is not specific to threshold dynamics and may be easily extended to any binary state process, while our study and 
conclusions may be useful in accurately modelling other dynamical phenomena over weighted networks.

Results
Threshold model and approximate solutions. To study threshold driven dynamical processes over 
weighted networks we build on the seminal model proposed by Watts30. Following its standard formulation30,38–40, 
we define a monotone binary-state dynamics over a weighted, undirected network of size N. Degrees take discrete 
values k = 0, …, N − 1 according to a distribution P(k), and edge weights w > 0 are continuous variables with 
distribution P(w). The edge weight wij represents the capacity of connected nodes i and j to influence each other. 
Accordingly, the node strength = ∑ =q i w( )k j

k
ij1  is the total influence node i receives from its k neighbours. Like in 

other conventional models of spreading dynamics41, nodes can be in two mutually exclusive states, susceptible 
(initially all nodes), or infected (also called adopter in the social contagion literature). A susceptible node can 
become infected either spontaneously with rate p39,40, or if the influence of its infected neighbours exceeds a given 
threshold φ (0 < φ < 1). However, influence may vary from neighbour to neighbour. We implement this idea by 
defining the partial strength q i w( )m j

m
ij1= ∑ =  associated with the influence of the m infected neighbours on node 

i (where 0 ≤ m ≤ k). If the condition qm ≥ φqk is fulfilled, node i becomes infected and remains so indefinitely. For 
simplicity we assume that all nodes have the same threshold φ, just as in many other studies30,38 (implementation 
details in Methods).

We explore this model analytically by extending Gleeson’s approximate master equation (AME) formalism for 
stochastic binary-state dynamics41–44 over weighted networks. Although we only consider monotone dynamics in 
detail, our formalism can easily be extended to arbitrary binary state processes (see Supplementary Information 
[SI]). The original AME formalism considers unweighted networks with an arbitrary degree distribution, which 
are otherwise maximally random. It assumes that all nodes with degree k and number of infected neighbours m 
follow the same dynamics, forming a node class (k, m) that can be described by a single pair of rate equations. In 
order to extend this formalism to weighted networks, we discretise P(w) and assume only n possible weight types 
wj, such that all distinct weights in the network are contained in the weight vector w = (w1, …, wn)T. Then, a node 
in class (k, m) has kj links with weight wj and mj = 0, …, kj infected neighbours across these links, such that 

= ∑ = kk j
n

j1  and m mj
n

j1= ∑ = . Furthermore, we can define a degree vector k = (k1, …, kn)T and a partial degree 
vector m = (m1, …, mn)T, generalising the strength and partial strength to qk = k ⋅ w and qm = m ⋅ w, respectively. 
Nodes in class (k, m) have identical strengths and partial strengths, and follow the same pair of rate equations for 
the fraction sk,m(t) [ik,m(t)] of k-nodes that are susceptible (infected) at time t and have partial degree vector m 
(see Methods and SI). Fig. 1a illustrates the case of n = 2, and shows the possible transitions into and out of the 
class of susceptible nodes with degree vector k = (2, 2) and partial degree vector m = (1, 1).

In threshold driven contagion a susceptible node can become infected in two ways, either spontaneously with 
rate p, or if its weighted threshold φ is reached. As such, the infection rate of susceptible nodes in class (k, m) is

φ
φ=






<
≥ >F

p q q
q q k1 , 0,

(1)
k m

m k

m k
,

with F0,0 = p. The stepwise nature of Fk,m allows us to map the rate equations for sk,m and ik,m to a 
reduced-dimension system, as has been done previously for the Watts threshold model41,42,44 and unweighted 
complex contagion39,40. Namely, if we consider as aggregated variables the density ρ(t) of infected nodes and the 
probability νj(t) that a randomly chosen neighbour (across a j-type edge) of a susceptible node is infected (for 
definitions see Methods), then the description of the dynamics can be reduced to the system of n + 1 equations

g t( , ) , (2a)j j jν νν= −


ρ ρν= −


h t( , ) , (2b)

where ν = (ν1, …, νn)T is the vector of probabilities νj for all weight types, and gj(ν, t) and h(ν, t) are functions of 
binomial terms (see Methods and SI).
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Regular networks with bimodal weights. To study the dynamics of our model we first consider a simple 
structure, the configuration-model k-regular network, with k = 7. Edge weights are sampled from a bimodal dis-
tribution with n = 2 values, denoted strong (w1) and weak (w2). The weight distribution is characterised by its 
average μ, standard deviation σ ≥ 0, and the fraction δ of links that are strong. Thus, weights take the values 
w (1 )/1 μ σ δ δ= + −  and μ σ δ δ= − −w /(1 )2 . The parameter δ contributes to the skewness of P(w), ini-
tially fixed to the symmetric case δ = 0.5. The parameter σ interpolates weight heterogeneity between the homo-
geneous case of an unweighted network (σ = 0), and the most heterogeneous case of a diluted network 
(σ μ δ δ= −(1 )/ ), where only strong links have influence and the weak are functionally absent. After fixing the 
spontaneous infection rate p and skewness δ, our model has only two parameters, σ and φ (Fig. 1b). Similar to 
other dynamical cascade models39,40, contagion initially evolves at a linear rate until the density ρ(t) of infected 
nodes reaches a critical value, triggering a rapid cascade of infection that spreads through the whole network 
(sample scenarios in Fig. 1c,d). Thus, to characterise the speed of dynamics we introduce the quantity ta, the time 
when infection density reaches a set value (ρ = 0.75), called the absolute time of cascade emergence. We measure 
ta via numerical simulations of the (σ, φ)-parameter space (Fig. 1b), which shows unexpected dependencies on 
both parameters. On one hand, for fixed σ and increasing φ the dynamics slows down, since nodes with higher 
thresholds require more infected neighbours to become infected. On the other, for fixed φ the dynamics depends 
non-monotonously on σ, where cascades may evolve either faster or slower as we increase weight heterogeneity, 
relative to the unweighted case (σ = 0). Note that similar behaviour is exhibited after setting p = 0 and introducing 
an initial seed, although in the following we use the dynamic variant of the Watts model, where p > 0.

We concentrate on the σ dependency by calculating φ σ φ φ= −t t t t[ (0, ) ( , )]/ (0, )r a a a , the time of cascade 
emergence relative to the unweighted case with the same φ value. (Fig. 2a). The relative time tr will be positive if 
the weighted process evolves faster than the unweighted case, zero if they evolve at the same speed, and negative 
if slower than the unweighted case. The (σ, φ)-parameter space for tr is highly structured and driven by competing 
effects of key (k,m) classes, which either reduce or enhance the speed of the spreading process as compared to the 
unweighted case. We also explore the corresponding numerical solution of the AME systems in Eq. 2, as well as 
an independent combinatorial solution for the boundaries between regions of low and high cascade speed 
(Fig. 2b,c) (see Methods and SI). Both the AME and combinatorial solutions perfectly recover the parameter 
space obtained by simulations. To further explore how weight heterogeneities produce slow or fast cascades, we 
partition the system according to the number m of infected neighbours required for infection, and measure the 
aggregated infection rate F t P F s t P s tk k( ) ( ) ( )/ ( ) ( )k m k m k m k m k m k m, , , , , ,= ∑ ∑  and other determinant quantities in sev-
eral spreading scenarios (Fig. 2d,e).

In the neutral scenario, all (k, m) classes of the weighted network share the same dynamics as the correspond-
ing (k, m) class in an unweighted network, so Fk,m = p or 1 and weights have no impact on contagion, meaning 
tr = 0. In a decelerative scenario like φ = 0.25 and σ = 0.3 (Fig. 2d), Fk,m for any m is equal to its unweighted coun-
terpart, except for the m = 2 class. Here, the adoption rate is 1 in the unweighted case but strongly suppressed 
in the weighted case, thus decreasing the overall spreading speed. For an accelerative scenario, like φ = 0.25 and 
σ = 0.7, competing effects from several (k, m) classes combine to determine the overall dynamics (Fig. 2e). The 
rate Fk,m for m = 2, …, 4 is lower than 1 which is a decelerative effect (as in the previous case), but the rate Fk,1, 

Figure 1. Threshold driven contagion and cascade evolution on weighted networks. (a) Transitions into and 
out of a class Sk,m of susceptible nodes in a network with two weights (n = 2). Susceptible nodes may enter or 
leave Sk,m with rate β s

1 , s
2β  via the infection of neighbours with weight type j = 1,2, or via their own infection 

with rate Fk,m. (b) Parameter dependence of the time ta of cascade emergence (main panel) on a random regular 
network with degree k = 7, and bimodal weight distribution with mean μ = 1 and standard deviation σ (for 
further details see text). Cascade speed is measured by the time ta to reach 75% infection. For fixed threshold φ 
and varying σ, ta changes non-monotonously, while for fixed σ and varying φ, dynamics slows down for 
increasing φ (top/right panels, corresponding to horizontal/vertical dashed lines in main panel). (c,d) Spreading 
time series ρ(t) for selected parameter values in (b). Curves in panel (c) were measured with fixed φ = 0.25 at 
σ = 0 (curve 1), 0.3 (2), and 0.7 (3), while curves in panel (d) were measured with fixed σ = 0.5 at φ = 0.3 (4), 0.4 
(5), and 0.5 (6). Simulation results in (b–d) are averages of 25 simulations with p = 2 × 10−4 and N = 104.
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which is equal to p in the unweighted case, is significantly larger than p here. Since at the early stages of contagion 
the number of nodes in class m = 1 is larger than in any other class with m > 1, spreading evolves rapidly to an 
early cascade. It should be noted that competition between the accelerative and decelerative effects of the weight 
distribution is one of the defining characteristics of threshold driven contagion on weighted networks. It is this 
competition that leads to the interference patterns evident in Fig. 2a.

Furthermore, an asymmetry is observed to emerge in the fractions of weak and strong links connecting 
infected [EII(t)] or susceptible and infected [ESI(t)] nodes (see Methods). Since strong ties contribute the most to 
reaching the threshold of a node, they participate earlier in the contagion and comprise most ties in the infected 
subgraph. Conversely, weak ties dominate the surface of the cascade by connecting infected and susceptible 
nodes. This asymmetry in edge types is an essential feature of weighted contagion that is trivially absent in the 
unweighted case. This asymmetry appears in cases of both accelerated and decelerated spreading, with amplitude 
dependent on the absolute value of the relative time of contagion. Note that results from simulations (symbols in 
Fig. 2d and e) and AMEs (lines in Fig. 2d and e) agree very well, for all quantities studied.

Up until now we have considered the symmetric case δ = 0.5 with equal numbers of strong and weak links. 
However, by skewing the weight distribution we observe an additional effect of weight heterogeneities on the 
spreading behaviour. When δ = 0.2 the extent of the cascade decreases for large σ with respect to the unweighted 
case (Fig. 3a). In this case, despite their sparsity, strong links again drive the contagion, but are soon exhausted 
causing spreading to slow down and continue via spontaneous or infrequent threshold driven infections over 
weak ties (Fig. 3b). Indeed, strong links dominate the bulk of the infected component, but disappear quickly 
from its surface (Fig. 3c). These so-called partial cascades, which do not infect the whole system through the cas-
cade, are associated with skewness and a sufficiently large standard deviation in the weight distribution and are 
reminiscent of the slow spreading caused by immune nodes, as well as low connectivity networks in unweighted 
complex contagion30,39,40. Overall, we identify non-monotonous spreading behaviour and partial cascades as the 
main consequences of weight heterogeneities in threshold driven contagion.

Heterogeneous synthetic and real networks. Although regular networks and bimodal weights are use-
ful in characterising the qualitative impact of weights on contagion, they are rather unrealistic since real complex 
networks commonly appear with broad degree and weight distributions3. Thus, in the following we explore how 
threshold driven contagion is influenced by weights using simulations in heterogeneous synthetic and real 
weighted networks (Fig. 4). We expect degree heterogeneities to affect threshold driven processes since thresholds 

Figure 2. Relative time of threshold driven cascades on weighted networks. (a) Relative time tr of cascade 
emergence on (σ, φ)-parameter space, simulated over k-regular regular networks (k = 7) with μ = 1, δ = 0.5, 
p = 2 × 10−4, N = 104 and averaged over 25 realisations. Time of cascades for given φ is either higher or lower 
than the corresponding case (0, φ) of an unweighted network. (b,c) Selected regions of parameter space in (a), 
where tr is instead calculated from the numerical solution of the AME systems in Eq. 2. Boundaries are obtained 
from a combinatorial argument (see Methods and SI) for various (k, m) classes. For example, the boundary 
k = (2, 5), m = (1, 0) separates networks where nodes with k1 = 2 strong links and k2 = 5 weak links may (or 
may not) be infected by m1 = 1 strong infected neighbour. (d,e) Quantities characterising the dynamics in 
simulations (symbols) and AMEs (lines) for φ = 0.25 and σ corresponding to the unweighted case, as well as to 
a slow (d) or fast (e) cascade. Quantities are the infection density ρ(t) (upper panel), aggregated infection rate 
Fk,m(t) for various numbers of infected neighbours m (middle panel), and fractions of strong (w1) and weak (w2) 
links inside the infected cluster [EII(t)] and on the surface of it [ESI(t)] (bottom panel). Simulation and theory 
results in (a–e) agree perfectly.
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are defined relative to the degree (or strength) of nodes. As a first step we take synthetic scale-free networks from 
the configuration model with degree distribution ∼ τ−P k k( )  and exponent τ = 2.5, but maintain a bimodal 
weight distribution with μ = 1 and δ = 0.5 as in the previous section (Fig. 4a). The increased number of (k, m) 
classes (due to degree heterogeneity) fragments the (σ, φ)-parameter space for tr, but its structure still reveals 
areas of slow and fast cascades and can be explained by the same arguments used for the k-regular case. Real 
world examples of this synthetic structure are signed social networks, like the network of Wikipedia editors45, 
where degrees are broadly distributed and edge signs indicate the parity (or binary weight) of a social interaction 
like trust, intimacy, or influence. We also simulate our threshold model over the Wikipedia social network by 
associating + and − tie signs with strong (w1) and weak (w2) links, thus obtaining a weighted network with 
δ = 0.88 and arbitrary σ (Fig. 4d) (see Methods). Despite complex structural correlations potentially present in the 
real data, the Wikipedia (σ, φ)-parameter space is qualitatively similar to the case of a synthetic scale-free degree 
distribution, although these correlations and the high δ value transform the areas of relative acceleration and 
deceleration. To further validate these observations, we have also analysed configuration-model random net-
works and another empirical signed network, the Pardus dataset20 (see SI).

As with degree heterogeneities, weights in empirical networks are broadly distributed and approximated by 
scale-free or lognormal distributions, which we address by exploring the threshold model on k-regular networks 
(k = 7) and a lognormal weight distribution with average μ = 1 (Fig. 4b). Even though all nodes have the same 
degree, diversity of weight values increases the number of (k, m) classes, smoothing out the (σ, φ)-parameter 
space with respect to the bimodal case but qualitatively maintaining its non-monotonous patterns of slow and fast 
cascades. The standard deviation σ controls the skewness of the weight distribution and determines the temporal 
evolution of contagion, promoting partial cascades for large σ (Fig. 4c). Finally, we consider threshold driven 
contagion in a large empirical weighted social network, an aggregated mobile phone call (MPC) network, where 
weights are proportional to the number of calls between individuals (Fig. 4e) (see Methods). This network has 
broad degree and weight distributions9, communities, degree correlations and Granovetter-type degree-weight 
correlations46. Despite this added complexity, the (σ, φ)-parameter space of the MPC network is qualitatively 
similar to previous cases, apart from the magnitude of the decelerative effect when weights are strongly heteroge-
neous. As before, skewness in the weight distribution temporally inhibits contagion and induces partial cascades 
(Fig. 4f). Our data-driven simulations show that, even in empirical networks of vastly different origins, threshold 
driven contagion strongly depends on link weights via simple mechanisms that can be understood by master 
equations or combinatorial arguments. This dependence may be responsible for the diverse dynamical scenarios 
of threshold driven contagion observed in nature, like the diffusion of information in techno-social networks, 
which typically reaches a limited population, but can occasionally unfold globally through slow or fast cascades 
of adoption.

Discussion
In complex networks, weights quantify the strength of interactions between nodes and distinguish neighbours 
by their relevance or influence. Threshold driven contagion in empirical settings is particularly sensitive to link 
weights, since influence between connected nodes may vary enormously, thus changing the temporal pattern 
of global spreading. Examples of real-world threshold driven processes over weighted networks can be found 
in epidemiology, where contagion is enabled by direct human interactions that occur at varying frequencies 
throughout the population26. In the case of social contagion, like the spreading of information, service or product 

Figure 3. Effect of skewed weight distributions on cascade evolution. (a) Infection density ρ(t) on k-regular 
networks (k = 7) and a bimodal weight distribution with μ = 3 and δ = 0.2, both for unweighted (σ = 0) and 
heterogeneous (σ > 0) cases. (b,c) Fractions of strong (w1) and weak (w2) links connecting two infected nodes 
in the bulk of the infected component [EII (t), b] and susceptible and infected nodes on its surface [ESI(t), c] 
in the heterogeneous spreading scenario of (a). Simulations (symbols) are averaged over 25 realisations with 
p = 2 × 10−4 and N = 104, and compared with the corresponding AME solution of Eqs (3)-(2) (lines). Dashed 
lines are the expected fractions of weak and strong links as determined by δ, and the vertical line shows the 
inflection point of ρ in the heterogeneous case of (a), which coincides with a turning point of EII in (b).
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adoption, participation in collective movements, or the adoption of behavioural patterns, heterogeneities in social 
tie strengths are relevant as they may reflect the strength of influence of people on each other7,19,22,46. In neural sys-
tems, the synaptic weight (a function of several variables) may vary heterogeneously between connected neurons 
and even in time due to synaptic plasticity34,47. Despite this broad set of real-world examples, threshold driven 
contagion has mostly only been studied over unweighted networks where links are considered equal.

Our aim in this paper has been to address this shortfall by systematically studying a threshold model 
on synthetic and empirical weighted networks. We explore networks with increasing complexity, from 
configuration-model networks with bimodal or lognormal weights, to real world networks with broad degree 
and weight distributions as well as multiple correlations. We show that threshold driven contagion depends 
non-monotonously on weight heterogeneity, creating slow or fast cascades relative to the equivalent unweighted 
spreading process. Via numerical simulations, master equations and combinatorial arguments, we find that this 
effect is the result of competing configurations of degree, weight, and infected neighbours that slow down or 
speed up contagion. We also observe that an imbalance in the amount of large and small weights leads to partial 
cascades, and smoother temporal patterns of spreading than those in unweighted networks. By analysing a range 
of degree and weight configurations, we show that these features are systemic and thus may drive a variety of real 
world contagion phenomena.

Our contribution opens up directions of research in the largely unexplored area of dynamical processes with 
heterogeneous interactions. First, the weight-based, master equation formalism described here can be modified to 
consider any interaction quality like direction and type, thus providing analytical tools to characterise threshold 
driven contagion in temporal and multiplex networks48,49. The master equation formalism also provides means 
of studying the cascade-size phase space30, where one might expect a non-monotonic dependence of cascade 
size on weight heterogeneity, an effect observed in ref.50 due to threshold heterogeneity. In addition, although the 
effects of initial seed size on the emerging cascades have been addressed earlier51, it has never been studied on 
weighted structures, and may prove an interesting direction to explore. Second, our methodology may be used 
to describe any binary-state dynamics and thus a broad class of empirical processes over weighted networks. We 

Figure 4. Threshold contagion on heterogeneous synthetic and real networks. (a) Relative time tr of cascade 
emergence on (σ, φ)-parameter space, simulated over synthetic scale-free networks with degree exponent 
τ = 2.5, average degree z = 4.54 and minimum degree kmin = 2. Link weights are bimodally distributed with 
μ = 1 and δ = 0.5. (b) Same as (a) but over a k-regular network (k = 7) and a lognormal weight distribution 
with μ = 1. (c) Infection density ρ(t) in the lognormal case of (b) for φ = 0.28 and varying σ. The skewness of 
the weight distribution induces partial cascades in contagion. (d) Relative time tr of cascade emergence on (σ, 
φ)-parameter space, simulated over a signed social network of Wikipedia editors with heterogeneous degrees 
and skewed bimodal weight distribution (see Methods). (e) Same as (d) but over a mobile phone call (MPC) 
network with heterogeneously distributed degrees and weights, and μ = 37.7. (f) Infection density ρ(t) in the 
MPC network of (e) for φ = 0.4 and varying σ. Synthetic networks in (a,b) have N = 104 and parameter spaces 
are averaged over 25 realisations. Parameter space in (d) is averaged over 103 realisations, while (e) is the result 
of a single realisation. All simulations correspond to p = 2 × 10−4.
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expect our results to find meaningful applications in fields where threshold driven contagion is relevant, like 
computational epidemiology, neural networks, and social contagion. In these fields our modelling framework, 
which distinguishes the varied roles and influence of links, may lead to advances in the understanding and pre-
diction of specific temporal features of global pandemics, collective neural firing, or the adoption of innovations 
and behavioural norms.

Methods
Numerical implementation. We implement weighted complex contagion numerically via Monte Carlo 
simulations of a monotone binary-state dynamics. Node states change from susceptible to infected in asynchro-
nous random order in a series of time steps. Once a node state changes from susceptible to infected, it remains so 
for the rest of the dynamics, thus ensuring a frozen final state for the finite system where no more state changes 
take place. Each time step consists of N node updates. In each node update, a randomly selected node becomes 
spontaneously infected with probability p, or else it adopts only if the weighted threshold rule qm ≥ φqk is satisfied 
(see Eq. 1). This is the case if the selected node is susceptible; if the node is infected, no action is taken. We assume 
that nodes with k = 0 receive no influence from the rest of the network (for any value of φ), and therefore can only 
change state spontaneously. Regarding synthetic networks, we only consider configuration-model networks52 
with an uncorrelated distribution of edge weights on top of them, i.e. an ensemble of networks specified by the 
distributions P(k) and P(w), but otherwise maximally random. Thus, the distributions P(k) and P(w) (together 
with p) determine the average topological state and dynamical evolution of the system.

AMEs in weighted networks. The dynamics of our threshold model evolves in small time intervals dt. 
Accordingly, the rate equations for the fractions sk,m(t) [ik,m(t)] of k-nodes that are susceptible (infected) at time t 
and have partial degree vector m are

d
dt

s F s k m s k m s( ) ( 1) ,
(3a)j

n

j
s

j j
j

n

j
s

j jk m k m k m k m k m e, , ,
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,
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, j∑ ∑β β= − − − + − +
= =

−

d
dt

i F s k m i k m i( ) ( 1) ,
(3b)j

n

j
i

j j
j

n

j
i

j jk m k m k m k m k m e, , ,
1

,
1

, j∑ ∑β β= + − − + − +
= =

−

where Fk,m is the rate of infection of susceptible nodes in class (k, m), and the other terms quantify the rates at 
which susceptible nodes leave and enter the class (k, m) via the infection of susceptible neighbours. The j-th basis 
vector of dimension n is denoted by ej ( ≡−s 0k e, j

), while t( )j
sβ  [ t( )j

iβ ] is the rate at which a j-type susceptible 
neighbour of a susceptible (infected) node becomes infected (see Fig. 1a). The AME system (2) applies to all 
monotone binary-state dynamics over edge-heterogeneous networks, regardless of the form of Fk,m, and its solu-
tion provides a very accurate description of the dynamics, even if the number of equations to solve grows rapidly 
with n. Moreover, variables in Eq. (3) satisfy the normalisation condition

i s 1
(4)m

k m
m

k m, ,∑ ∑+ = .

If k is distributed according to P(k), the probability that a randomly selected node has degree k and degree 
vector k is P(k)P(k). Then, the rates t( )j

sβ  and β t( )j
i  are

t
P k P k m F s t

P k P k m s t
k

k
( )

( ) ( )( ) ( )
( ) ( )( ) ( ) (5a)

j
s k j j

k j j

k m k m k m
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, , , ,

, , ,
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∑ −

∑ −
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t
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,
(5b)

j
i k j j
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β =

∑ −

∑ −

where the sum over all degrees, strength and partial strength vectors is written explicitly as

(6)k k k

k

m

k

m

k

k m k, , 0 0n

n

min

max

1

1

∑ ∑ ∑ ∑ ∑= … .
= = =

The second sum runs over all strength vectors k = (k1, …, kn)T satisfying the constraint = ∑ =k kj
n

j1 .

Aggregated variables and the reduced AMEs. Variables in Eq. (2) are the fraction of infected nodes in 
the system,

t P k P s tk( ) 1 ( ) ( ) ( ),
(7)k k m

k m
, ,

,∑ρ = −

and the probability that a randomly chosen neighbour (across a j-type edge) of a susceptible node is infected,
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∑

∑
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Also, Eq. (2) includes the functions of binomial terms
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−
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with ft = 1−(1 − p)e−pt, zj the average number of j-type edges of a node, and ρ ρ= − −( )B (1 )k m
k

m
m k m

,j j

j

j

j j j the 
binomial distribution.

Initial conditions. We assume that at time t = 0 there is an infinitesimally small fraction of infected nodes 
randomly distributed in the network, so the initial condition for Eq. (3) is

∏= .
=

s B(0) (0)
(10)j

n

k mk m,
1

,j j

In the reduced AMEs, Eq. (10) corresponds to [ν(0), ρ(0)] = (0, 0).

Combinatorial solution of parameter space boundaries. Taking the equality in the threshold rule, 
Eq. 1, and writing qk, qm explicitly, we obtain φ = m ⋅ w/k ⋅ w, where w implicitly depends on σ. After solving this 
equation for a given k and m, we associate the solution with a boundary line of tr values in (σ,φ)-parameter space 
(Fig. 2b,c). These boundaries separate network configurations where the corresponding (k, m) class does or does 
not satisfy the threshold rule. For example, the boundary k = (3, 4), m = (1,0) (Fig. 2c) separates networks where 
nodes with k1 = 3 strong links and k2 = 4 weak links may be infected by only m1 = 1 strong infected neighbour. If 
two networks differ only in the rate of infection of nodes in this (k, m) class (so that one is eligible for infection 
and not the other), we observe a difference in spreading time (for details see SI).

Bulk and interface of the contagion cluster. We characterise the effect of weights in threshold driven 
contagion by measuring how many j-type links, 1 ≤ j ≤ n, are on the bulk and at the surface of cascades. Explicitly, 
we compute the fraction of j-type links per node, connecting two infected nodes (the cascade bulk),

E t
P k P k m i t
P k P k mi t

( )
( ) ( ) ( )
( ) ( ) ( )

,
(11)

j
II k j

k

k,m k m

k,m k m

, ,

, ,
=

∑

∑

and susceptible and infected nodes (cascade surface),

E t
P k P k m s t
P k P k ms t

( )
( ) ( ) ( )
( ) ( ) ( )

,
(12)

j
SI k j

k

k,m k m

k,m k m

, ,

, ,
=

∑

∑

such that ∑jEII = ∑jESI = 1. Now if P(w) is bimodal (n = 2), then + =E E 1SI SI
1 2 , + =E E 1II II

1 2 , and we may 
remove the index j (Figs 2d,e and 3c). The quantities Ej

II and Ej
SI diverge from 1/2 with amplitude dependent on 

the absolute difference of the speed from the dynamics on unweighted networks (σ = 0) where = =E E 1/2j
II

j
SI .

Data description. We perform data-driven simulations of our threshold model in two large-scale, empirical 
social networks. The first is a network of N = 138,592 English Wikipedia editors contributing to articles about 
politics. Each of the 740,397 directed links (defining an edit, revert, restore, or vote action in an article) has a 
sign (±), interpreted as the parity of trust between connected editors (for free access online and details see ref.45). 
In our study we remove self-loops and assume bidirectional links appear as undirected links with their original 
sign (if they shared the same sign), while choosing a sign randomly in the case where they appear with different 
signs (such edges only form 0.96% of the network, so their effect is not significant). Unidirectional links are also 
regarded as undirected with their original sign. Finally, we associate + and − tie signs to strong (w1) and weak 
(w2) links. The network has a broad degree distribution, a fraction δ = 0.88 of strong links and average weight 
μ = 2.7.

The second data set is an aggregated, static social network of N = 6,243,322 individuals connected by 
16,783,865 undirected links with weights defined as the number of phone calls between people in an observation 
period of 6 months (a link exists if people have mutually called each other at least once). All individuals are cus-
tomers of a single phone provider with 20% market share in an undisclosed European country. Degree and weight 
distributions are broad and can be approximated by power-law and lognormal distributions, respectively (for 
details see ref.9). Since for the MPC network P(w) is fixed, we introduce a method to scale σ without changing the 
shape of the distribution, described as follows. We first assume that the MPC network has a weight set W = {w1, 
…, w|E|}, where wi is the weight of the i-th edge, and |E| is the number of edges in the network. This set has mean 
and variance
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Now we consider a new weight set W′ = {μ + α(w1 − μ), …, μ + α(w|E| − μ)}, where we have applied the transfor-
mation w w( )i iμ α μ′ = + − , i = 1, …, |E|, and 0 ≤ α ≤ 1 is a tuning parameter. The limits of this transformation 
give a Dirac delta distribution (α = 0) or P(w) (α = 1). Substituting ′wi  into the expression for σ, we see that the 
mean and standard deviation of the transformed weight set are μ′ = μ and σ′ = ασ. Then, we may obtain a new 
weight distribution retaining the shape of P(w) by applying the transformation  ′w wi i . If σ′ is the desired stand-
ard deviation, the required tuning parameter is α = σ′/σ.

Data availability statement. The Wikipedia network data we used in Fig. 4d is freely available online 
at45. The mobile call data used in Fig. 4e and f are available from an undisclosed mobile operator but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Data may however be available from the authors upon reasonable request and with permission of the 
provider.
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