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Abstract

The emergence of Acinetobacter baumannii strains, with broad multidrug-resistance phenotypes and novel virulence factors

unique to hypervirulent strains, presents a major threat to human health worldwide. Although a number of studies have

described virulence-affecting entities for this organism, very few have identified regulatory elements controlling their

expression. Previously, our group has documented the global identification and curation of regulatory RNAs in A. baumannii.

As such, in the present study, we detail an extension of this work, the performance of an extensive bioinformatic analysis to

identify regulatory proteins in the recently annotated genome of the highly virulent AB5075 strain. In so doing, 243

transcription factors, 14 two-component systems (TCSs), 2 orphan response regulators, 1 hybrid TCS and 5 s factors were

found. A comparison of these elements between AB5075 and other clinical isolates, as well as a laboratory strain, led to the

identification of several conserved regulatory elements, whilst at the same time uncovering regulators unique to

hypervirulent strains. Lastly, by comparing regulatory elements compiled in this study to genes shown to be essential for

AB5075 infection, we were able to highlight elements with a specific importance for pathogenic behaviour. Collectively, our

work offers a unique insight into the regulatory network of A. baumannii strains, and provides insight into the evolution of

hypervirulent lineages.

DATA SUMMARY

The updated GenBank files for AB5075 and ATCC
17978, containing the revised transcription factor descrip-
tions and annotations, have been deposited in Figshare:
https://figshare.com/s/690a28e453bbe85eb683. Overviews
and comparisons of TFs and two-component systems in
various Acinetobacter baumannii genomes are shown in
Tables S1 and S2 (available in the online Supplementary
Material).

INTRODUCTION

Acinetobacter baumannii is a Gram-negative pathogen
that is becoming increasingly problematic due to its
ability to survive on fomite surfaces, resist the action of
common disinfectants and evade treatment with antimi-
crobial agents [1, 2]. Consequently, this organism causes
severe infections in both hospital and community

settings, including pneumonia, skin and soft-tissue infec-
tions, urinary-tract infections, endocarditis, and meningi-
tis [1, 3–6].

Most studies exploring the mechanisms of disease causation

by this important pathogen have been performed using two

A. baumannii strains, ATCC 19606 and ATCC 17978, both

isolated in the 1950s. However, several genomic differences

between these strains and more recent clinical isolates make

both suboptimal for the study of pathogenesis. For example,

each of these strains lacks the 86 kb pathogenicity island

AbaR1 that harbours genes important for resistance to

metal ions and an array of antibiotics [7]. This renders both

strains susceptible to common therapeutics that are ineffec-

tive against the antibiotic-resistant and highly virulent

strains currently found in most hospital settings [8–10].

Furthermore, recent clinical isolates display extensive geno-

mic variation, as well as hypervirulent phenotypes, when
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compared to their historic counterparts, highlighting the
rapid evolution of contemporary isolates [11].

In line with this, a recent study sought to characterize mod-
ern clinical strains of A. baumannii using genetic
approaches, alongside a murine model of pneumonia and a
Galleria mellonella model of infection [12]. This study iden-
tified strain AB5075, a multidrug-resistant (MDR) wound
isolate recovered from a patient at the Walter Reed Army
Medical Center, USA [13], as being highly virulent, suggest-
ing the potential for novel genes and regulatory mechanisms
that enable this strain to colonize, disseminate and persist in
different infection sites [14].

Amongst the genes found to be important for pathogenicity
in A. baumannii, several transcriptional regulators have
been identified. This is perhaps unsurprising, as the produc-
tion of virulence determinants in A. baumannii, much like
in other bacteria, is a finely tuned process that allows for
adaptation to changing environmental conditions and sur-
vival in specific niches. This tight regulation of gene expres-
sion is, amongst others things, controlled by transcription
factors (TFs, also known as one-component systems), which
are classified into several families, commonly generally
based on two key features: (i) a DNA-binding domain that
interacts with enhancer, silencer or promoter regions; and
(ii) a trans-acting domain that often serves as a sensor,
receiving signals such as protein–protein interaction or the
binding of small molecules [15]. Similarly to TFs, two-com-
ponent systems (TCSs), which typically consist of a mem-
brane-embedded sensor kinase and a cytoplasmically
located response regulator (RR), can react to environmental
stimuli and trigger a cellular response by influencing the
transcriptional process [16]. Finally, alternative s factors
can also influence regulatory networks by facilitating DNA-
dependent RNA polymerase (RNAP) recognition of unique
promoters [17]. Each of these different regulatory elements
(TFs, TCSs, s factors) interacts with RNAP in specific and
discrete ways, modulating promoter recognition and tran-
scriptional initiation of target genes [15].

To date, only a handful of TFs have been characterized in A.
baumannii, including AdeL, a LysR-type regulator, and
AdeN, a TetR-like regulator, controlling expression of the
AdeFGH and AdeIJK efflux pumps, respectively [18–20].
Additionally, the ferric-uptake regulator (Fur) has been
described as controlling expression of genes involved in
siderophore production [21, 22]. A fourth TF, SoxR, is a
MerR-like regulator governing transcription of the AbuO
outer-membrane protein, which is important for resistance
to osmotic and oxidative stress [23]. Finally, Zur is a Fur-
like regulator identified as being critical for zinc homeosta-
sis in a mouse model of A. baumannii infection [24]. With
respect to TCSs, only five have thus far been characterized
in A. baumannii. The first, BfmSR, controls production of
capsular exopolysaccharides as well as pilus assembly, and
consequently, cell attachment and biofilm formation [25,
26]. Additionally, the PmrAB TCS has been described as
sensing low Mg2+ concentrations, as well as cationic

antibiotics such as polymyxin B [27]. Another two TCSs,
AdeRS and BaeRS, were shown to be connected with antibi-
otic exposure, both controlling the expression of AdeABC, a
major efflux pump conferring resistance to tigecycline
[28–30]. Finally, GacS, a hybrid TCS, which interacts with
GacA, an orphan RR, controls the phenylacetic acid cata-
bolic pathway, as well as genes involved in biofilm forma-
tion, pilus synthesis and motility [31]. To date, there are no
studies describing the role of alternative s factors in A.
baumannii.

Previously, we have documented the global identification
and curation of regulatory RNAs in A. baumannii strain
AB5075 [32]. In the context of proteinaceous regulators,
however, their essential role in cellular physiology and path-
ogenesis is still largely unexplored. As such, our goal was to
perform a comprehensive evaluation of the AB5075 genome
to identify and classify every TF, TCS and s factor. Follow-
ing this, we compared the distribution of these elements
among susceptible and MDR strains. This comparison pro-
vides a unique insight into A. baumannii-specific regulators,
and sheds light onto the influence of TFs in the evolution of
pathogenesis in this organism.

METHODS

Identification of TFs

To identify TFs in A. baumannii AB5075, we used a combi-
nation of information sources and bioinformatics tools. The
complete set of TFs identified in Escherichia coli [33], Bacil-
lus subtilis [34] and Staphylococcus aureus [35] were used as

IMPACT STATEMENT

In the last two decades, the rise of Acinetobacter bauman-

nii infections has presented an immense burden for

patients and the public-health sector. Despite the

increased number of reports describing clinical A. bau-

mannii isolates expressing a wealth of virulence factors,

and displaying resistance to most commonly used anti-
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this work, we identified all regulatory elements in the
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seeds to search for homologues in the complete genome of
A. baumannii strains using BLASTP searches (with an E value
�10�3 and a coverage of �60%). In addition, we used a bat-
tery of hidden Markov model (HMM) profiles associated
with the three bacterial reference datasets to identify poten-
tial TFs not resolved by BLASTP searches. Finally, PFAM,
Superfamily and CD-search were used to assign evolution-
ary families, and to exclude proteins with no regulatory
activity (i.e. false positives). In all cases, an E value �10�3

was used as a cut-off. For each TF identified in A. bauman-
nii AB5075, a BLASTN AND BLASTP search against other A.
baumannii genomes was performed. For a protein to be
considered a homologue, a BLASTP E value �10�20 and
coverage of �60% relative to the seed sequence was
required. Further classification of TF families was per-
formed using PFAM database annotations and the database
of Clusters of Orthologous Groups of proteins (COGs); all of
which were verified using BLAST searches against annotated
protein families. Assignments of putative function to
uncharacterized regulatory elements in AB5075 were per-
formed using a combination of BLASTP and literature
searches of hits corresponding to well-characterized pro-
teins. An E value �10�10 and coverage �30% of aligned
proteins was used as a cut-off for this analysis. Updated
genome annotations files for AB5075 and ATCC 17978,
containing the results of our bioinformatics analyses, have
been deposited in Figshare (https://figshare.com/s/
690a28e453bbe85eb683).

Proteomes analysed

In order to determine conservation of TFs in the genome of
AB5075, we analysed six Acinetobacter genomes. These
were: A. baumannii AB5075 (https://dx.doi.org/10.6084/
m9.figshare.1592959.v1); A. baumannii AB0057 (GenBank
accession no. CP001182); A. baumannii AB307 0294 (Gen-
Bank accession no. NC_011595); A. baumannii ACICU
(GenBank accession no. NC_010611); A. baumannii ATCC
17978 (GenBank accession no. CP000521.1); and A.

baumannii AYE (GenBank accession no. NC_010410).
Unless noted otherwise, sequences were downloaded from
the National Center for Biotechnology Information (NCBI)
ftp server (www.ncbi.nlm.nih.gov/genome).

Identification of s factors

In order to identify s factors present in AB5075, we used
the genome sequences of E. coli K-12 MG1655 (GenBank
accession no. NC_000913) and Pseudomonas aeruginosa
PAO1 (GenBank accession no. NC_002516.2). Sequences
were downloaded from the NCBI ftp server (www.ncbi.nlm.
nih.gov/genome). A search for homologues in the genome
of AB5075, and subsequent conservation analysis in the six
other A. baumannii strains, was performed using BLASTP

searches (with an E value �10�20 and coverage of �60%).
Further alignments were generated using CLC Genomics
Workbench (version 7.6.1; CLC bio).

RESULTS AND DISCUSSION

Identification of TFs in the A. baumannii 5075
genome

In order to enhance our understanding of regulatory net-
works within A. baumannii, we performed a genome-wide
analysis of TFs present in strain AB5075. This strain was
chosen because it has a fully annotated genome, is hypervir-
ulent in animal models of infection, is resistant to many
commonly used antibiotics, and belongs to one of the three
main clonal lineages most prevalent in hospital outbreaks
worldwide [14, 36–38]. Accordingly, we surveyed the entire
genome of AB5075 using HMM profiling to predict the
presence of TFs. These findings were manually curated by
validation of protein sequences against PFAM libraries and
by BLAST searches against the NCBI database. This resulted
in the identification of 243 TFs (Table S1, available in the
online Supplementary Material). These TFs were classified
into 42 different families (Fig. 1, Table S1), with the major-
ity corresponding to the LysR (59) and TetR families (42).
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Fig. 1. Classification of TFs identified in A. baumannii AB5075. The grouping of TFs into families was performed by BLASTP analysis.

Groups that contained only one protein were combined under ‘others’.
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One of the regulatory proteins identified was DnaA
(ABUW_0001). In E. coli, DnaA has a dual role, functioning
both as an initiator of replication and also acting as a tran-
scriptional regulator [39, 40]. This latter function includes
the repression and activation of several genes, including
guaA, dam, rpoH, ftsA and mioC, which are involved in
metabolic functions, chromosomal replication, cell division
and stress response [39]. Therefore, the corresponding
DnaA protein of A. baumannii was included as a TF in our
study.

Notably, and as suggested above, of all the TFs identified in
AB5075, only a limited number have been characterized
thus far in any A. baumannii isolate (Table S1). These
include: (i) the TetR and LysR proteins AdeN
(ABUW_1731) and AdeL (ABUW_1338) [19]; (ii) two
members of the Fur family, Fur (ABUW_3033) and Zur
(ABUW_3741) [21, 22, 24]; and (iii) the MerR-like protein
SoxR (ABUW_2555) [23].

As functions for the majority of regulators identified in

our screen have not been reported in A. baumannii, we

performed a BLASTP analysis and literature search for sim-

ilar proteins to query sequences, thereby allowing us to

propose theoretical functions (Table 1). In so doing, we

were able to assign putative functions to 29 TFs, corre-

sponding to AraC, ArsR, Bhl, Crp, DnaA, Fis, GntR, IclR,

LysR, LytR, MarR, MerR, NrdR, Rrf2 and TetR family

proteins, based on characterized factors with strong

sequence similarity in the NCBI database. This included

TFs that function in: the response to iron starvation, the

production of exotoxins and utilization of aromatic com-

pounds as carbon sources, as well as more general meta-

bolic processes (Table 1). Notably, despite the large

amount of LysR and TetR proteins identified, very few

were found to have homologues in other organisms. One

such element, ABUW_2970 (TetR family), displayed a

sequence identity of 81% to the TF BetI, which acts as a

Table 1. Putative functions of TFs in A. baumannii AB5075

Shaded rows indicate genes required for A. baumannii infection of G. mellonella [12]. T3SS, Type III secretion system.

Protein ID Family Comment Identity

(E value)

Reference

ABUW_3565 AraC Regulator of methylation damage in E. coli 32% (2e�49) [93]

ABUW_2370 ArsR Involved in arsenic detoxification in E.coli 52% (3e�30) [94]

ABUW_3668 ArsR Regulator of the ars operon in E. coli 59% (4e�35) [95]

ABUW_2198 Bhl Nucleoid organization and regulation in E. coli 71% (8e�46) [96]

ABUW_2241 Bhl Required for site-specific recombination system expression in E. coli 56% (6e�40) [42]

ABUW_3279 Bhl Integration host factor (IhfA) in E. coli controlling type 1-fimbrial expression (fimA) 68% (5e�47) [43]

ABUW_2741 Crp Regulator of genes involved in the production of exotoxin and secretion systems (T3SS) in P.

aeruginosa

55% (9e�83) [44, 97]

ABUW_0001 DnaA Regulates initiation of bacterial replication in E. coli 48% (2e�159) [98]

ABUW_1533 Fis Homeostatic regulator of DNA topology in E. coli 59% (8e�33) [45, 46]

ABUW_3813 GntR Regulator of genes involved in transport and catabolism of L-lactate in E. coli 48% (4e�78) [99, 100]

ABUW_2775 GntR Repressor for utilization of vanillate in A. baylyi ADP1 84% (6e�141) [101]

ABUW_0075 GntR Regulator of histidine utilization genes in Brucella abortus 31% (7e�42) [102]

ABUW_1848 IclR Controls protocatechuate degradation in A. baylyi ADP1 82% (3e�172) [47, 48]

ABUW_2488 IclR Regulation of pobA in response to B-hydroxybenzoate in A. baylyi ADP1 82% (2e�170) [103]

ABUW_0067 IclR Repressor of an aromatic catabolic pathway in Pseudomonas putida 31% (7e�32) [104]

ABUW_1599 LysR Involved in regulation of genes responsible for swarming in P. aeruginosa. 47% (1e�77) [105]

ABUW_1878 LysR Repressor of benzoate catabolism in P. putida 39% (6e�65) [106]

ABUW_2709 LysR Regulation of benzoate degradation in A. baylyi ADP1 65% (2e�149) [107, 108]

ABUW_2849 LysR Inhibitor of DNA replication in E. coli 36% (3e�34) [109]

ABUW_3471 LysR Regulation of 3-phenylpropionic acid catabolism in E. coli 43% (1e�75) [110]

ABUW_1016 LysR Positive regulation of sulfate starvation inducible genes 52% (2e�12) [111–

113]

ABUW_3615 LytTR Regulator of alginate biosynthesis in P. aeruginosa 47% (2e�78) [53]

ABUW_3790 MarR Leucine-responsive regulatory protein (Lrp) in E. coli 57% (1e�59) [114]

ABUW_2706 MerR Regulator of copper export in E. coli 41% (2e�42) [115]

ABUW_3015 MerR Positive regulation of slpA, resulting in excision of cryptic prophage (CP4–57) in E. coli 40% (8e�04) [116, 61]

ABUW_3665 MerR Cadmium-induced regulator in P. aeruginosa 49% (3e�36) [117, 118]

ABUW_3653 NrdR Regulator of ribonucleotide reductases operons in E. coli. 55% (3e�64) [54]

ABUW_2201 Rrf2 Regulator of iron–sulfur clusters in E. coli 54% (2e�49) [49]

ABUW_2970 TetR Choline-responsive repressor in A. baylyi 81% (9e�130) [41]
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repressor of two choline transporters, and the betIBA

operon, which regulates the choline oxidation pathway, in

Acinetobacter baylyi (Table 1) [41].

In an attempt to provide some pathogenic context to this
curation of TFs, we compared our findings to recent work
by Gebhardt and colleagues, who screened a transposon
insertion sequence library (TnSeq) of AB5075 in a G. mello-
nella infection model [12]. This resulted in 31 TFs reported
as being essential for growth in their worm model
(Table S1, highlighted in Fig. 2). Interestingly, among the
TFs with putative functions listed in Table 1, four were
reported to be essential for survival of AB5075 in G. mello-
nella (shaded in grey in Table 1). This group includes
ABUW_2241, a member of the Bhl family required for reg-
ulation of genes controlling several cellular processes,
including lambda site-specific recombination, in E. coli [42,
43]. Additionally, a member of the Crp family
(ABUW_2741) was found to be important for infection in
the worm model. Of interest, a homologue to this protein
serves to regulate the type III secretion system in P. aerugi-
nosa [44]. Finally, two proteins, ABUW_1848 and
ABUW_2370, members of the IclR and ArsR families of
transcriptional regulators, respectively, were also required
for A. baumannii virulence. A homologue of ABUW_2370
has been reported to control expression of genes involved in
regulating arsenic detoxification in E. coli, whilst an
ABUW_1848 homologue controls aromatic catabolism in
A. baylyi ADP1. [45–49].

TF distribution in AB5075

Core regulatory elements

Next, we sought to investigate the conservation of AB5075
TFs in other A. baumannii strains. We hypothesized that
the absence of certain TFs in less pathogenic strains, when
compared to their hypervirulent counterparts, may aid in
explaining their decreased ability to infect mammalian
hosts. As such, we analysed the laboratory strain ATCC
17978, which is susceptible to the majority of antibiotics
used for A. baumannii infections, as well as four clinical
isolates, including the drug susceptible AB307-0294 strain,
and three MDR isolates: AB0057, AYE and ACICU [10,
50–52]. In so doing, we found a set of 202 TFs to be con-
served in each genome; thus, presenting the core regulatory
elements of these species (Fig. 2, Table S1). Within this set,
only 22 TFs had putatively assigned functions. For these
TFs, homologues in other organisms are involved in the
regulation of metabolism, detoxification and virulence,
suggesting that they may fine tune the expression of essen-
tial genes important for basal and conserved physiological
processes [49, 53–60].
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Fig. 2. Conservation of TFs across A. baumannii strains. Homologues

to AB5075 regulatory proteins were identified as outlined in Methods.

A blue box denotes the presence of an homologue, while red boxes

mark the absence of a given regulator. An asterisk highlights frame-

shift mutation(s) in the homologous ORF. Gene names that are in red

font highlight factors that have been shown to be essential for AB5075

infection in a worm model [12].
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Next, we investigated the number of conserved TFs in rela-
tion to the genome size for each A. baumannii strain.
Despite the fact that ATCC 17978 and AB5075 both have a
genome size of approximately 4.0 Mbp, the conservation of
TFs between these two strains is only 88.5%, reflecting sig-
nificant potential genomic alterations due to horizontal
gene transfer, insertions or deletions. Conversely, AB0057,
AYE, AB307-0294 and ACICU showed TF conservation of
98.4, 95.9, 94.2 and 91.4%, respectively (Table 2), indicating
a closer evolutionary proximity to AB5075. An important
note is that, for these conservation analyses, we used an
AB5075 centric view, in that we did not assess TFs present
in other strains but not in AB5075 itself. As such, there
remains the possibility that the loss of certain elements,
which might be common to strains other than AB5075,
could help to explain the hypervirulence of the latter. Never-
theless, as we were primarily interested in understanding
the physiology of AB5075, we placed an emphasis on the
specific regulatory elements in this strain.

Non-conserved elements

In contrast to the TFs conserved across each of the different
isolates, we found several proteins to be absent in one or
more of the investigated strains (Fig. 2, Table S1). For exam-
ple, ABUW_3015, a putative member of the MerR family of
regulators, is only conserved in AB0057 and AB307-0294.
Of note, ABUW_3015 showed 40% sequence identity to a
TF in E. coli, AlpA, previously characterized as a positive
regulator of slpA, a gene that is part of a cryptic prophage
suggested to be involved in biofilm formation (Table 1)
[61]. Importantly, the presence of phage-like regions in the
chromosome of several A. baumannii clinical strains has
been previously reported, including for AB0057 and
AB5075; however, their significance has yet to be elucidated
[37, 50]. Likewise, ABUW_1599, a LysR-type regulator, was
absent in the ACICU strain. According to the putative func-
tion assigned in this work (Table 1), ABUW_1599 may be
involved in the regulation of swarming motility. Interest-
ingly, this phenotype has been reported to be absent in
ACICU, although the genes encoding a type IV pilus are
present in ACICU [62].

Non-conserved elements that are important for

virulence

The recent in vivo screening of an AB5075 transposon
library using a G. mellonella infection model [12] identified
several TFs that were found not to be conserved across A.
baumannii strains (Table S1) [12, 63]. Among these are
ABUW_2074, a member of the Fur family, which is absent
in the non-pathogenic strain ATCC 17978. Interestingly,
this strain also lacks a heme uptake system and heme oxy-
genase, which have both been shown as necessary for viru-
lence [64]. Given that Fur family proteins are known to be
involved in the regulation of iron uptake, and that
ABUW_2074 is conserved in all four clinical A. baumannii
strains studied herein, this may suggest a central role for
ABUW_2074 in controlling nutrient acquisition in the host
[64, 65]. Additionally, ABUW_1966, a member of the LysR

family, is absent in ATCC 17978. Interestingly,
ABUW_1966 has been shown to be necessary for resistance
to antibiotics targeting cell-wall synthesis, and is required
for growth in G. mellonella [12]. In this context, ATCC
17978 is a drug-sensitive strain, possibly suggesting
ABUW_1966 may have a role in regulating genes required
for antimicrobial resistance.

TCSs in AB5075

In addition to TFs, another layer of regulation found in
bacteria is mediated by TCSs. These systems typically
combine a sensor kinase protein that receives a signal fol-
lowing a specific stimulus, and transduces this to a RR
protein via phosphorylation, resulting in altered gene
expression [66]. Given that a TF might interact with a
sensory protein and serve as a RR, we combined HMM
profiling with BLASTP analysis using a list of TCSs corre-
sponding to the P. aeruginosa PAO1 genome to detect
these elements in AB5075. We identified 14 RR proteins
encoded together with a sensor kinase protein. This set of
14 TCSs includes: (i) 11 members of the OmpR family;
(ii) 2 members of the HTH_8 family; and (iii) 1 member
of the LuxR family (Table S2). This latter TCS corre-
sponds to a sensor protein (ABUW_2427) that possesses
both histidine kinase and RR domains, and is encoded
adjacent to the RR protein ABUW_2426. Given that the
hybrid sensor kinase ABUW_2427 and RR ABUW_2426
are localized within the same operon it has been included
in the set of 14 TCSs. Of note, from the 14 RR/sensor
pairs identified, only 4 have previously been studied in A.
baumannii (Table S2). ABUW_0608/ABUW_0609 and
ABUW1972/ABUW1973 have previously been named
BaeSR and AdeRS, respectively, and described as having
regulatory roles in the expression of efflux pumps [30, 67].
Likewise, ABUW_0828/ABUW_0829 corresponds to the
PmrAB TCS that was found to confer resistance to the
cationic antimicrobial colistin [27]. Finally, ABUW_3180/
ABUW_3181 was characterized as TCS BfmSR, which
controls biofilm formation, motility and exopolysaccharide
production, and is required for pathogenicity in a G. mel-
lonella infection model [12, 25–27, 30, 67].

As with our analysis of TFs, we next searched for homo-
logues to the remaining 10 TCSs to identify those that may
have been characterized in other species. In so doing, we

Table 2. Comparison of genome size and the presence of homologues

to AB5075 regulators in various A. baumannii strains

Strain Genome

size (nt)

No. of

conserved

TFs

Conservation relative

to AB5075 (%)

AB0057 4 050 513 239 98.4

AYE 3 936 291 233 95.9

AB307-0294 3 760 981 229 94.2

ACICU 3 904 116 222 91.4

ATCC 17978 3 857 743 215 88.5
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assigned putative functions to seven additional elements
(Table 3). Of these, two members of the HTH_8 family,
ABUW_1732 and ABUW_3641, showed sequence similar-
ity to hitherto characterized proteins. ABUW_1732 shows
64% identity to NtcR, a RR that controls the nifLA operon,
which is required for nitrogen assimilation in Klebsiella
pneumoniae; while ABUW_3641 displays 51% identity to
a type IV fimbriae RR in P. aeruginosa [55, 68]. The five
remaining factors were all OmpR RRs, and had similarity
to systems controlling the response to phosphate, heavy
metals, osmotic stress or the expression of flagella
(Table 3). Of note, although not yet characterized,
ABUW_1514/1515 was found to be required for growth in
G. mellonella, which implies its importance for AB5075
pathogenicity (Table S2) [12].

In addition to TCSs, we also identified two orphan RRs
that were not associated with a histidine kinase,
ABUW_0180 and ABUW_3639, which are members of
the LuxR and GerE families, respectively. Interestingly,
ABUW_3639 has been previously characterized as GacA,
an orphan RR of the phenylacetic acid catabolic pathway,
which interacts with a hybrid sensor kinase GacS [31]. In
concert both elements control expression of the csu
operon, which is involved in pilus synthesis, required for
virulence in A. baumannii ATCC 17978, as well as genes
involved in biofilm formation. [31]. Lastly, ABUW_3306
was identified as a hybrid TCS, harbouring sensory and
regulatory domains. Upon analysis, it was determined that
the protein showed 100% identity to GacS in ATCC
17978 [31].

TCS distribution in AB5075

Of the 14 TCS RRs identified in this study, only 1 was found
not to be conserved in all the five strains used in this analy-
sis. This was ABUW_ 3641, a member of the HTH_8 fam-
ily, which was marked as absent (Table S2) in the laboratory
strain ATCC 17978 based on a combination of protein and
nucleotide BLAST analysis (discussed further below). The
conservation of ABUW_3641 may reflect its role in regulat-
ing genes required for twitching motility, which is a com-
mon phenotype reported in A. baumannii strains, with the
exception of ATCC 17978 [62, 69, 70]. In contrast, the
remaining 13 TCS RRs, 2 orphan RRs and the hybrid TCS
identified were common to all A. baumannii strains. Of

note, seven of the conserved TCS RRs had predicted func-
tions, including the response to osmotic stress, heavy metal
efflux and the regulation of motility [71].

s factors in AB5075

Along with TFs, s factors provide another, and perhaps
more basal, level of regulation, guiding RNAP to unique
promoters to initiate transcription of specific genes in
response to external stimuli [17]. Given their vital regula-
tory role, we next explored the genome of AB5075 to
identify potential s factors genes. To do this, we generated
a list of known s factors present in the genomes of the P.
aeruginosa strain PAO1 and E. coli strain K-12, both of
which contain multiple s factors that have been well
described [72–79]. The amino acid sequence for each of
these elements was then used in BLASTP searches against
the AB5075 genome. Resulting hits were subsequently ana-
lysed using the PFAM database to determine conservation
of domains inherent to s factor activity. Alignments of
each putative AB5075 s factor were then generated for E.
coli K-12 and P. aeruginosa PAO1 homologues to identify
specific active site residues required for s factor function.

Consequently, we identified five putative s factors in
AB5075, including ABUW_0862, which is the A. bau-
mannii RpoD (sA) homologue. Specifically, ABUW_0862
showed sequence identity of 62 and 63% to RpoD of E.
coli and P. aeruginosa, respectively. As shown in Fig. 3(a),
alignment of amino acid sequences revealed the conserva-
tion of regions 2.4 and 4.2, which is in agreement with
the function of these domains in recognizing the �10
and �35 sequences of housekeeping genes. The inhibitory
domain, region 1, and the RNAP binding domain, region
3, were also present [80]. Other than s

A, we identified
ABUW_1375 as having 64% identity to RpoH of P. aeru-
ginosa and 59% to RpoH from E. coli. Comparative
alignments for RpoH proteins revealed the conservation
of two motifs (QRKLFFNLR and LRNWRIVK) located in
region 2.4, both reported binding sites for DnaK, a pro-
tein chaperone that controls RpoH stability (Fig. 3b) [81].
A third putative s factor, ABUW_3253, was found to
have conserved regions characteristic of RpoN, a member
of the s

54 family, involved in regulating nitrogen metabo-
lism and bacterial virulence [76]. Two distinct regions in
ABUW_3253 were found to be similar to the RpoN

Table 3. List of TCSs found in AB5075 with putatively assigned functions

Protein ID Family Comment Identity (E value) Reference

ABUW_1732 HTH_8 Regulator of nitrogenase synthesis in K. pneumoniae 64% (0) [55, 119]

ABUW_3641 HTH_8 Regulator of type IV fimbriae in P. aeruginosa 51% (2e�165) [68]

ABUW_0106 OmpR Regulator of the PhoB regulon during phosphate starvation in E.coli 62% (6e�104) [120]

ABUW_0257 OmpR Two-component OmpR–EnvZ regulator that senses osmotic stress in E. coli 69% (2e�117) [121], [122]

ABUW_1506 OmpR Regulator of genes involved in resistance to cadmium and zinc in Burkholderia pseudomallei 53% (6e�89) [71]

ABUW_1585 OmpR Involved in K+ ion transport regulation in E. coli 42% (4e�67) [123]

ABUW_3323 OmpR RR involved in copper resistance in E. coli 62% (2e�109) [124, 125]
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protein of E. coli (Fig. 3c): region 1 of ABUW_3253 con-

tains several leucine residues within a heptad motif previ-
ously reported to be important for recognition of �12

promoter elements; whilst a signature s
54 amino acid

sequence (ARRTVAKYRE), also known as the RpoN box,

required for DNA binding, was also found [76, 82, 83].

Lastly, ABUW_0988 and ABUW_2987 were found to
have conserved regions in domains s2 and s4 found in

the extracytoplasmic s factors RpoE and FecI, which
have been reported to function in cell envelope stress and

iron acquisition, respectively [84, 85]. Alignments of

ABUW_0988 with RpoE of E. coli and AlgU from P. aer-
uginosa, a homologue of RpoE (Fig. 3d), showed conser-

vation of the VQEAFI sequence in region 2, which is
thought to be critical for transcription of rpoE. Further to

this, several amino acid residues, such as arginine, lysine,

leucine and isoleucine, were found in region 4, which are
believed to be important for recognition of �35 promoter

regions and binding of anti-s factor proteins [75, 86, 87].
With regards to ABUW_2987, it is noteworthy that it is

located in an apparent operon that has similar organiza-

tion to the fecABCDE operon required for ferric citrate
transport in E. coli [88]. Interestingly, alignment of

ABUW_2987 with FecI of E. coli identified two conserved
residues (L146 and K155), both within a helix-turn-helix

motif in region 4.2, that have been reported as being

essential for FecI–FecR interaction and binding to the b¢

subunit of RNAP, respectively (Fig. 3e) [84].

We next explored conservation of AB5075 s factor pro-
teins in the genomes of other A. baumannii strains. We
found that four of the five s factors were ubiquitously
conserved, but, quite surprisingly, the FecI-like protein
ABUW_2987 was absent in all A. baumannii strains
with the exception of two MDR clinical isolates, AB0057
and ACICU [52]. Of note, FecI is found in AB5075
within a cluster of eight genes, encoding protein homo-
logues of FecR, TonB and HemO, which encode a cyto-
plasmic protein sensor of ferric citrate, a TonB-
dependent outer membrane transport protein and a
heme oxygenase, respectively. Similarly, this cluster is
also absent in ATCC 17978, AB307-0294 and AYE
strains. Interestingly, this locus is conserved in ACICU
and AB0057, as well as in A. baumannii LAC-4, a viru-
lent isolate with tolerance to chelators of ferric iron [64].
It is possible that the lack of conservation of this cluster
in some A. baumannii strains is due to recent acquisi-
tion via lateral transfer. This notion is supported by the
idea that possession of this operon might represent a
mechanism for acquisition of heme as an alternative
iron source, providing an advantage for survival in iron-
limited environments, such as during infection, for viru-
lent clinical strains [89–91].
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Fig. 3. Alignment of s factors from E. coli, P. aeruginosa and A. baumannii. Multiple alignments were performed for s factors found in

A. baumannii AB5075, E. coli and P. aeruginosa. (a) Conservation in regions 2.4 and 4.2, which are essential for promoter recognition, as

well as region 3 (all indicated by blue boxes), were observed. (b) Two conserved amino acid sequences critical for binding to DnaK

(blue boxes) were noted for all three RpoH proteins. (c) Several leucine residues, within a conserved heptad motif, and a conserved

amino acid sequence only found in s54 family proteins (blue box), were identified in RpoN homologues. (d) Blue boxes indicate a con-

served amino acid sequence within regions 2 and 4 of RpoE, important for transcription of rpoE and promoter recognition in general.

(e) Asterisks indicate conservation of a leucine residue essential for FecI–FecR interaction, and a lysine residue critical for binding to

the b subunit of RNAP. Throughout this figure, pink boxes represent amino acids that display divergence between the compared

sequences.
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Inconsistent annotations and genomic divergence
in A. baumannii strains

Given that our study is largely reliant on accurate genome
annotation files, and that we have previously reported
inconsistencies in prokaryotic repositories of this type [32,
92], we took an additional approach to our analysis so as to
minimize the influence of annotation inaccuracies on our
investigations. As such, alongside protein/annotation-based
searches, we also performed nucleotide BLAST analyses
(Table S1). The rationale for this was to identify genomic
regions with nucleotide conservation for a given TF-encod-
ing ORF, regardless of whether automated systems had
annotated a protein. While generally the quality of annota-
tion files for the strains used was high, allowing a compre-
hensive inter-genome comparison, we did uncover a
number of inconsistencies. Firstly, we identified several loci
that showed extensive nucleotide conservation towards
annotated AB5075 TF ORFs, but that did not have an anno-
tation at the corresponding position. We also discovered
regions that, despite retaining nucleotide conservation, had
differing length gene annotations between the various
strains, indicating the use of alternative start codons.
Finally, we noted regions where mutations (e.g. frameshifts)
had occurred, leading to the presence of novel stop codons,

and thus partial annotations and/or altered protein
sequences.

With respect to this first category, AB5075 ABUW_1486 is
annotated as a TetR-type regulatory protein; however, no
clear homologue is present in ATCC 17978. Using a nucleo-
tide BLAST, we identified a large, intergenic and unannotated
region of 1656 nt in ATCC 17978 that displayed major
sequence homology to the AB5075 ABUW_1486 locus
(Fig. 4a, b). Using bioinformatics analyses (http://web.
expasy.org/translate/), we found a hypothetical ORF in this
region that showed 99% conservation at the amino acid
level to ABUW_1486 (A1S_2218.1) (Fig. 4c). Thus,
although not annotated in the ATCC 17978 genome file, we
included A1S_2218.1 in our study.

ABUW_2117 in AB5075 is a HxlR-type regulator and a
homologue of A1S_1714 in ATCC 17978 (BLASTP=
3.7�10�56). Surprisingly, a corresponding nucleotide
BLAST for these two loci returned a E value of 0. Upon
further investigation, we found that the A1S_1714 gene
is annotated with a different start codon to
ABUW_2117, which results in a truncated protein
(Fig. 5a, b). Interestingly, the ABUW_2117 start codon
is also present in the A1S_1714 gene, and would
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CGA A CT T A T A T A T A A A A T CA T CCT T CCT A T T CA CA A T A A A A T A T CT T CAG A AGA A T A T A A AGA A AGAGCC A T T A T T A T A A T CA CT CA A CT T A A T GGA T A T T T AGT T CA A C

CGA A CT T A T C T A T A A A A T CA T CCT CCCCA T T CA T A A T A A A A T A T CT T CAG A AGA A T A T A A AGA A AGAGCC A T T A T T A T A A T CA CT CA A CT T A A T GGA T A T T T AGT T CA A C

A T T CA A A CA A A A A T A CAGA T GA A AGT T A T A A AGA A T T T T T A AGA AGT A T A CT GT T A A A A A A T A T A T T A AG A T T AGT CAGT GA A CCA T A A

A T T CGA A CA A A A A T A CAGA T GA A AGT T A T A A AGA A T T T T T A AGA AGT A T A CT GT T A A A A A A T A T A T T A AG A T T AGT CAGT GA A CCA T A A

M I K I D T FD T M Q I K K S F T T L K GR ER I KQ I L R N A E I V F L T KG Y SG F SMRGV A T Q SN I S L ST L QH Y FQN KD I L L K A L L N K L I C D Y I QR I E I L I N L N AN E P P L I R FMN I I T N I I

M I K I D T FD T M Q I K K S F T T L K GQER I KQ I L R N A E I V F L T KG Y SG F S I RGV A T Q SN I S L ST L QH Y FQN KD I L L K A L L N K L I C D Y I QR I E I L I N L N AN E P P L I R FMN I I T N I I

Y E I EQ P I I T N A FK E F F S I SD H L P YV Y EA L S I I QK YN L E L I YK I I L P I HN K I S SE E YK ERA I I I I T Q L NGY L VQH SN KN T D E SYK E F L R S I L L KN I L R L V S E P

Y E I EQ P I I T N A FK E F F S I SD H L P YV Y EA L S I I QK YN L E L I YK I I L P I HN K I S SE E YK ERA I I I I T Q L NGY L VQH SN KN T D E SYK E F L R S I L L KN I L R L V S E P

Fig. 4. The influence of automated annotation systems on genomic content. (a) Genomic context of the AB5075 regulator ABUW_1486

and its homologous region in ATCC 17978. The current annotations for each genome are shown by dark grey arrows, whilst the light

grey arrow with a dashed outline is a possible missing annotation (A1S_2218.1 in ATCC 17978). Although not annotated in the genome,

this region shows high conservation at the (b) nucleotide and (c) amino acid level when compared to the ABUW_1486 protein and its

coding region. Differences between the compared sequences are highlighted by pink boxes.
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produce a longer protein similar to that of the AB5075
version (A1S_1714_ORFII). Comparing A1S_1714_OR-
FII and ABUW_2117 revealed a 96% conservation of
amino acid sequence between the original and alterna-
tive start codon variants of A1S_1714 (Fig. 5c). Since
we cannot exclude the possibility that the shorter pro-
tein is the correct version (meaning the AB5075 anno-
tation is wrong), we analysed AB5075 RNAsequencing
data recently generated by our group (Fig. 5d) [32]. In
so doing, we demonstrated that, although expressed at
a low level, AB5075 mRNA transcripts extended the
full length of the ORF, suggesting the upstream start
codon is in fact used by the cell. As such, we chose to
include A1S_1714_ORFII as a homologue of
ABUW_2117 in our study. Based on the findings pre-
sented herein, the putative A1S_2218.1 and the alterna-
tive A1S_1714_ORFII were both included in our
updated ATCC 17978 annotation file.

Finally, when performing a nucleotide BLAST with
ABUW_3641, a putative type IV fimbriae RR, we identified
a highly similar region in the genome of ATCC 17978 that
harbours three separate ORFs (Fig. 6a). The nucleotide
alignment of this region showed two frameshift mutations,
resulting in the introduction of two stop codons, producing
three distinct genes encoding different proteins. These three
separate proteins all possess unique domains: A1S_0234
specifies a RR receiver domain, A1S_0233 harbours a s

54

interaction domain and A1S_0232 is a TF of the Fis family
bearing a HTH8 domain, which is also conserved in
ABUW_3641 (Fig. 6b, c). Although one can only speculate
about the biological significance of this unique arrangement,

one possible explanation could be that the flexibility of this
tripartite regulatory system in ATCC 17978 is better suited
to its niche-specific lifestyle than a single protein such as
ABUW_3641 in AB5075. Given the uncertain biological rel-
evance of this unique arrangement, we did not record this
regulator as present in ATCC 17978.

Concluding remarks

Over the last three decades, A. baumannii has emerged as
a pathogen of major clinical concern due to its MDR
nature and abundant virulence traits, enabling it to cause
a wide variety of infections. Despite this, the regulatory
networks present in this organism remain poorly under-
stood, particularly with respect to pathogenesis. We have
previously documented the global identification and cura-
tion of regulatory RNAs in A. baumannii [32]. As such, a
primary goal of this study was to comprehensively
explore proteinaceous regulatory factors in the representa-
tive, and highly virulent, AB5075 strain. As part of this,
we combined our bioinformatic analyses and literature
searches with comparison to a recent TnSeq study of
AB5075 using a G. mellonella infection model [12]. This
analysis allowed us to identify regulatory elements com-
mon to all A. baumannii strains, which we suggest are
likely important for key biological processes, whilst at the
same time uncovering those that are more narrowly pos-
sessed, potentially indicating specialized and niche-specific
functions. It also allowed us to correlate conservation
with a known role in virulence; thus, shedding light on
the molecular basis of hypervirulence in certain clones
and isolates. We further identified a number of

A1S_1713

ABUW_2117

AB5075

(a)

(b)

(c)

(d)

ATCC 17978

ABUW_2118

A1S_1714

A1S_1714_ORFII

ABUW_2117

AB5075 ABUW_2118

A T GA CT GT A A CCA T A CCT CA T GA T A T T CAG AGT T CAGA T T GCCA A AGAGT T AGT CA AGT A T T GGCT AGAG T T GGAGAGA A

A T GA CT GT A A CCA T A T CT CA T GA T A T T CAG AGT T CAGA T T GCCA A AGAGT CAGT CA AGT G T T GGCT AGAG T T GGAGAGA A

A T GGAGT A T A CT CA T T GT A A T GA CA CT T GC A T CA CA T CCT CA T CGCT T T T CT GA A A T A A A GAGA CGT A T C A A T GGA A T A T

A T GGAGT A T A CT CA T T GT A A T GA CA CT T GC A T CA CA T CCT CA T CGCT T T T CT GA A T T A A A GAGA CGT A T C A A T GGA A T A T

CGCAGCGT A T GCT T A CA T T G T GT T T GCGT G GT T T AGA A CG AGA T GGGT T G GT T A A A CGT A CAGT T T A T CC T GT AGT T CCA

CGCAGCGT A T GCT T A CCT T A T GT T T GCGT G GT T T AGA A CG AGA T GGGT T G GT T A A A CGT A CGGT T T A T CC T GT AGT T CCA

CCT CA T GT T G A A T A T GA A T T A A CT CCA CT G GGCCA T T CA C T T A CAGA A CC T GT A A T T GCT T T AGGCCA A T GGGCT CAGCA

CCT CA T GT T G A A T A T GA A T T A A CT CCA CT G GGCCA T T CA C T T A CAGA A CC T GT A A T T GCT T T AGGCCA A T GGGCT CAGCA

GCA T A T T GCG GA T A T T GA T G CGGCA AGAGC T GCA T T T GA C GCAGCT CAGG AGA A A CCA A T T A CA T T AGA C A CT T A A

GCA T A T T GCG GA T A T T GA T G CGGCA AGAGC T GCA T T T GA C GCAGCT CAGG AGA A A CCA A T T A CA T T AGA C A CT T A A

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MT L A SH P H R F SE I K RR I

MT V T I PHD I Q S SD CQRV SQV L A RVGEKWS I L I VMT L A SH P H R F SE I K RR I

MT V T I SHD I Q S SD CQRV SQV L A RVGEKWS I L I VMT L A SH P H R F SE L K RR I

NG I SQRM L T L C L RG L ERDG L V K RT V Y PV V P PH V E Y E L T P L GH S L T E PV I A

NG I SQRM L T L C L RG L ERDG L V K RT V Y PV V P PH V E Y E L T P L GH S L T E PV I A

NG I SQRM L T L C L RG L ERDG L V K RT V Y PV V P PH V E Y E L T P L GH S L T E PV I A

L GQWAQQH I A D I D A A RA A FD A AQ EK P I T L D T

L GQWAQQH I A D I D A A RA A FD A AQ EK P I T L D T

L GQWAQQH I A D I D A A RA A FD A AQ EK P I T L D T

Fig. 5. Comparison of two homologous loci reveals translational start site disagreement between strains. (a) Genomic context of the

AB5075 regulator ABUW_2117 and its homologous region in ATCC 17978. Dark grey arrows highlight the annotations currently present

in the genome. The annotation shown as a light grey arrow with a dashed outline marks a potentially longer ORF (A1S_1714_ORFII) in

ATCC 17978. (b) Alignment of the nucleotide sequence of ABUW_2117 and the corresponding region in ATCC 17978. Pink boxes denote

differences within both sequences. A black arrow with a solid line highlights the translational start site of the annotated gene, while a

black arrow with a dashed line marks the potential start site of A1S_1714_ORFII. (c) Alignment of proteins encoded by ABUW_2117

and A1S_1714. The longer protein putatively encoded by A1S_1714_ORFII is shown to have only two amino acids substitutions when

compared to ABUW_2117 (pink boxes). (d) Transcriptional analysis of the ABUW_2117 locus. An arrow with a solid or a dashed line,

respectively, highlights the start site of the annotated and hypothetical homologues in ATCC 17978 (as shown in b). This RNA sequenc-

ing data was previously published by our group [32].
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uncharacterized regulatory elements that are not strongly
conserved, including members of the Fur and LysR fami-
lies, which are only present in clinical isolates of A. bau-
mannii, again potentially explaining the hypervirulent
phenotypes of certain strains. Collectively, this data pro-
vides novel candidates for further investigation, particu-
larly as putative anti-virulence-based drug targets.
Furthermore, our extensive genomic examination at the
nucleotide level, in combination with traditional protein
BLASTs, allowed us to detect the presence of frameshift
mutations and base substitutions in several TFs. This
finding suggests functional divergence of certain proteins,
by which genes with novel roles may have arisen and
become increasingly suited to the lifestyle of contempo-
rary clinical isolates. In summary, this study provides a
significant resource to those working in the area of A.
baumannii regulation and pathogenesis, delivering a com-
prehensive overview of the proteinaceous regulome. We
suggest that it provides a major foundation for the con-
tinued understanding of pathogenic mechanisms within
this important human pathogen.
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