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We present a set of Matlab/Octave functions to compute measures of emergence, 
self-organization, and complexity applied to discrete and continuous data. These 
measures are based on Shannon’s information and differential entropy. Examples from 
different datasets and probability distributions are provided to show how to use our 
proposed code.
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1. deSCRIPTIoN

Complexity has generated interest in recent years (Bar-Yam, 1997; Mitchell, 2009; Haken and 
Portugali, 2017). A complex system can be understood as one composed by many elements, which 
acquire functional/spatial/temporal structures without a priori specifications (Haken and Portugali, 
2017). It has been studied in several disciplines, as one can try to measure the complexity of almost 
any phenomenon (Lopez-Ruiz et al., 1995; Bandt and Pompe, 2002; Prokopenko et al., 2009; Lizier, 
2014; Soler-Toscano et al., 2014; Haken and Portugali, 2017). Thus, there exist a broad variety of 
measures of complexity where Shannon’s entropy and its generalizations have played a crucial role 
(Haken and Portugali, 2017). For instance, permutation entropy have been proposed for analyzing 
the complexity of time series in terms of its periodicity/chaoticity/randomness (Bandt and Pompe, 
2002), whereas the LMC Complexity describe it in terms of equilibrium and disequilibrium (Lopez-
Ruiz et al., 1995). Nevertheless, it should be noted that all measures of complexity have limits (Zenil 
and Kiani, 2016). Thus, it is important to promote the quantitative study of complexity through 
mathematical frameworks to enhance the exchange of ideas, for instance:

 1. The Java Information Dynamics Toolkit presents a multi-platform library to calculate complex-
ity of dynamical systems using Shannon’s entropy (e.g., information transfer) for discrete and 
continuous data (Lizier, 2014).

 2. The Online Algorithmic Complexity Calculator OACC, provides discrete estimations using 
Shannon entropy and the algorithmic complexity.

 3. The Algorithmic Complexity for Short Strings (ACSS), for the R language, computes the 
Kolmogorov complexity for short strings (Soler-Toscano et al., 2014; Gauvrit et al., 2016; Zenil 
et al., 2016).
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TABle 1 | Summary for discrete and continuous complexity octave/
Matlab functions.

Function or filename Functionality

DiscreteComplexityMeasures 
(pmfSample, noOfStates)

This function calculates discrete 
entropy-based complexity measures for 
a univariate sample in accordance to the 
number of the sample’s system states

ContinuousComplexityMeasures 
(pdfSample, minVal, maxVal, 
distSampleSize, noOfStates)

This function calculates continuous 
entropy-based complexity measures 
for a probability density distribution 
in accordance to the minimum and 
maximum values such distribution takes, 
the integration step, and the number of 
system’s states

bar3DPlot (M, width, param1Labels, 
param2Labels)

This function makes a 3D bar to 
graphically display ESC Measures
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In this manuscript, we present a package to calculate statistical 
measures of emergence E, self-organization S, and complexity C 
which are applicable to any dataset or probability distributions 
(Fernández et al., 2014; Santamaría-Bonfil et al., 2016). These are 
closely related to other Shannon-based measures (Lopez-Ruiz 
et al., 1995; Jost, 2006). In this regard, discrete measures are cal-
culated employing the discrete Shannon’s entropy. Rosetta Code 
website already provides code for Shannon’s discrete entropy in 
62 different programming languages (e.g., C, C++, Java, Matlab/
Octave, R, Python). On the other hand, continuous measures are 
calculated using Shannon’s differential entropy.

A previous effort of Fernández et  al. (2014) is provided in 
COMIN; however, it is rather a prototype. Specifically, our main 
contributions are as follows: (a) a software bundle to compute 
discrete and continuous statistical complexity measures; (b) 
examples on how to use both measures to analyze probability 
distributions and different timescales; (c) code comments to 
enhance usability; (d) vector and matrix operations to improve 
the computation time. This package was coded in Octave GNU 
4.0.3, checked for compatibility in Matlab2013a, and is publicly 
available at the web repository Entropy-based Complexity1 
(Santamaría-Bonfil, 2016). In Appendices A and B, code snippets 
of the function are provided.

This paper is organized as follows. Section 2 briefly describes 
theory on discrete and continuous complexity measures. Section 
3 provides an overview of the code functions, their inputs and 
outputs (summarized in Table 1). It also provides guidelines in 
results interpretation, issues, and limitations. Section 4 presents 
two examples (one per function) to introduce users to the basic 
usage of the developed functions. Finally, Section 5 presents a 
discussion on future development topics around entropy-based 
complexity measures.

In Appendix C, numeric results for the code examples are 
provided (three machine learning datasets2 (Fanaee-T and 
Gama, 2013; Lichman, 2013) and two probability distributions). 
Furthermore, in Appendix D, we provide an example on the 
use of our complexity measures to analyze a system at different 
timescales.

2. MeTHod: eMeRGeNCe, SelF-
oRGANIZATIoN, ANd CoMPleXITY

In this section, we describe the statistical measures of E, S, and 
C. Discrete measures were defined in a previous study presented 
in Fernández et al. (2014), latter extended for continuous prob-
ability distributions (Santamaría-Bonfil et al., 2016). This package 
is limited to the aforementioned measures. Proofs, advantages, 
and limitations are defined and discussed in Fernández et  al. 
(2014) and Santamaría-Bonfil et  al. (2016). Furthermore, for 
simplicity, differences between discrete and the continuous will 
be mentioned when necessary.

Many notions of Emergence describe it as novelty (between 
scales, in time, or within a process). E can be understood as new 

1 https://doi.org/10.5281/zenodo.166566.
2 http://archive.ics.uci.edu/ml.

global patterns which are not present in the system’s components. 
More precisely, for a discrete probability distributions, E meas-
ures the average ratio of uncertainty a process produces by new 
information that is a consequence of changes in (a) dynamics 
or (b) scale. For continuous distributions, E interpretation is 
constrained to the average uncertainty a process produces under 
a specific set of the distribution parameters (e.g., the SD value for a 
Gaussian distribution) (Santamaría-Bonfil et al., 2016). Formally, 
the discrete and continuous E are defined as follows:

 E K p pD i ii
N= −
=∑ log 21

 

 E K H XC = − + ∆∆→
∆(lim ( ) log ( ))0 2  (1)

ED in equation  (1) corresponds to the discrete E, where 
pi = P(X = x) is the probability of the element i. EC in equation (1) 
corresponds to the continuous E. Note that the latter is rather 
a quantized version of the differential entropy, where XΔ corre-
sponds to discretized version of X, and Δ is the integration step. 
On the other hand, K is a normalizing constant that constrains E 
within the range 0 ≤ E ≤ 1. It is estimated as

 K
b

= ,
1

2log ( )
 (2)

where b corresponds to the system’s alphabet size: the number 
of bins of a probability mass function, or, in the continuous 
case, to the states that satisfies P(xi) > 0. More importantly, the 
denominator of equation (2), log2(b), corresponds to the maxi-
mum entropy for a distribution function with alphabet size of 
b. Consequently, E can be understood as the ratio between the 
entropy for given distribution H(X), and the maximum entropy 
for the same alphabet size H(U), E H X

H U= ( )
( ) .

It is also worth noting that, ED = 0 is only achievable when the 
entropy for a given probability distribution is such that H(X) = 0, 
which corresponds to the entropy of a Dirac delta distribution. 
However, in the continuous case the differential entropy of a 
Dirac delta or a discrete value is −∞. Nonetheless, differential 
entropy only becomes negative when the probability distribution 
becomes extremely concentrated in very few states. Thus, when 
calculating our statistical continuous complexity measures, we set 
H(xi) = 0 iff H(xi) < 0.
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Self-organization, in its most general form, can be seen as 
a reduction of entropy (Gershenson and Heylighen, 2003). S 
is the complement of E, thus, self-organization is related to 
order and regularity due changes in the process dynamics or 
scale. In this sense, an entirely random process (e.g., uniform 
distribution) has the lowest organization and a completely 
deterministic system one (Dirac delta distribution) has the 
highest. S is defined as

 S E H P X
H U

= − = − 







,1 1 ( ( ))

( )
 (3)

such that 0 ≤ S ≤ 1.
Complexity comes from the Latin plexus, which means inter-

woven. Thus, something complex is difficult to separate. This 
means that its components are interdependent, i.e., their future is 
partly determined by their interactions. Complexity represents a 
balance between change and regularity (Kaufmann, 1993), which 
allows systems to adapt in a robust fashion. Regularity ensures that 
information survives, while change allows the exploration of new 
possibilities, essential for adaptability. In this sense, complexity 
can also be used to characterize living systems or artificial adap-
tive systems, especially when comparing their complexity with 
that of their environment (Fernández et al., 2014). More precisely, 
this function describes a system’s behavior in terms of the average 
uncertainty produced by emergent and regular global patterns 
as described by its probability distribution. Thus, the complexity 
measure is defined as

 C E S= ⋅ ⋅ ,4  (4)

such that, 0 ≤ C ≤ 1. C is only maximal when E and S are equal 
(i.e., E = S = 0.5). In Fernández et al. (2014) they showed that for 
a variable with only two states, the highest C is achieved when one 
of the states is highly probable, i.e., ≈0.89. Thus, it infers that a 
system which concentrates its dynamics into few highly probable 
states with many less frequent states, displays high complexity 
(e.g., a power-law distribution). C becomes 0 for equiprobable 
distributions.

3. FUNCTIoNS oF CoMPleXITY 
MeASUReS

The complexity of different phenomena can be calculated using 
entropy-based measures. However, to obtain meaningful results, 
users must first determine the adequate function to be employed 
for their problem (e.g., should a raw sample or an estimated prob-
ability distribution function be used?). In this section, we describe 
two functions for complexity: DiscreteComplexityMeasures, and 
ContinuousComplexityMeasures. We provide details on the inputs 
and outputs required by these complexity functions. In addition, 
we also provide a graphical function to display emergence, self-
organization, and complexity (ESC); we take no authorship of it 
since it is freely available on the internet3; nonetheless, in the next 
section, we provide details of its functionality.

3 http://stackoverflow.com/questions/24180890/3d-histogram-with-gnuplot-or-
octave, accessed 30/10/2016.

3.1. Functions definition
DiscreteComplexityMeasures, and ContinuousComplexityMea-
sures are briefly summarized at Table 1. In the following, inputs 
and outputs are detailed.

3.1.1. Inputs

 1. DiscreteComplexityMeasures(pmfSample, noOfStates)
 (a) pmfSample is a vector of size n × 1 which corresponds 

to n real values displayed by a given system, e.g., a time 
series.

 (b) noOfStates is an integer ≥2 that defines the number of 
states to coarse grain the given sample. If it is empty, a 
heuristic is used to calculate the number of system states.

 2. ContinuousComplexityMeasures(pdfSample, varargin)
 (a) pdfSample is a vector of size n × 1, which contains the n 

probability values assigned by the probability distribu-
tion function (i.e., f(x) = P(x)).

 (b) Additional parameters are:
 i. minVal, it’s a real value corresponding to the mini-

mal value where the PDF will be evaluated.
 ii. maxVal, it’s a real value corresponding to the ma-

ximal value where the PDF will be evaluated. It is 
strictly necessary that minVal < maxVal.

 iii. distSampleSize, is an integer value which correspon-
ds to an approximate sample size. This value is used 
to estimate the integration step ∆ = −maxVal minVal

distSampleSize .
 iv. noOfStates is an integer value used to define the 

number of possible states a system can take. As its 
discrete counterpart, it should satisfy that ≥2. In par-
ticular, noOfStates should be large to satisfy 0 ≤ E, 
S, C ≤ 1. If not provided, a heuristic is employed to 
obtain it.

 3. bar3DPlot(M, width, param1Labels, varargin)
 (a) M is n × 3 or n × m matrix. For the former, rows corre-

spond to a feature of a system whereas its columns are 
the corresponding E, S, C, respectively. For the latter, 
columns are rather a parameter of the system, thus, only 
one ESC measure can be displayed at a time.

 (b) width determines each bar size, this value ranges from
 (c) 0 < width ≤ 1.
 (d) param1Labels this parameter is n  ×  1 label matrix. It 

contains the corresponding labels for each row of M.
 (e) When M is a n × m matrix, additional labels are requi-

red. param2Labels is n × 1 label matrix which contains 
the corresponding labels for each column of M.

3.1.2. Outputs
Complexity measure functions return 4 elements: three manda-
tory outputs Emergence, Self-organization, Complexity, and an 
optional one, which corresponds to data’s discrete or continuous 
entropy.

3.2. Results Interpretation
E, S, and C measures provide a big picture about the expected 
uncertainty that belongs to a system in terms of its probability 
distribution product of (a) a reduction/increase of system’s states 

http://www.frontiersin.org/Robotics_and_AI
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FIGURe 1 | discrete e, S, and C for a single household electric consumption. These data correspond to time series of energy consumption per minute for a 
whole house and its kitchen. Note that the electricity consumption for the whole house has complexity near 1, while the kitchen is rather highly self-organized. In the 
former, the results imply that a single or few energy consumption states concentrate most of the probability (i.e., regular patterns) with many new emergent states of 
usage. In the latter, kitchen’s energy consumption is more regular and more predictable. In fact most of the time kitchen will not consume electricity (91% of the 
probability is concentrated in the 0 energy consumption state). Kitchen also displays a C ≈ 0.27, which is the result of its periodic usage (e.g., meals during 
workweeks).
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(Gershenson and Fernández, 2012), or (b) the concentration/
homogenization of the probability distribution (Santamaría-
Bonfil et  al., 2016). E is able to measure the change in scale 
given a process that transforms information (Gershenson and 
Fernández, 2012). For instance, E can be expressed as E H x

H x
out

in
= ( )

( ) , 
where Hin is the initial entropy for a system, and Hout = f(Hin) is Hin 
transformed by process f. On the other hand, for a given probabil-
ity distribution either discrete or continuous, if E is close to 1, the 
system shows similar probability for most of its states. Otherwise, 
if E  ≡  1, all states are equiprobable. Thus, if 0  <  E  ≪  1, then, 
system’s states distribution have few states with a considerable 
amount of the probability, whereas if 0 ≪ E < 1 then, the states of 
the system are more evenly distributed. Since S is the complement 
of E, the above mentioned descriptions apply in a conversely way 
to S. In this context, if S ≡ 1, the system can be considered to be 
predictable since a single state xj has P(xj) ≈ 1. This interpretation 
of E and S is shared by other Shannon-based measures like LMC 
Complexity and statistical diversity (Lopez-Ruiz et al., 1995; Jost, 
2006) (e.g., the disequilibrium of a crystal  =  the diversity of a 
population with exactly 1 species = Smax = 1).

On the other hand, C = 1 only when E, S = 0.5. Such scenario is 
given when a single or few state are highly concentrated in terms 
of their probability, with many other states with lesser probabili-
ties. In this regard, C becomes 0 when the distribution resembles 

a uniform distribution or a Dirac delta. Moreover, higher values 
of C are required in order to the probability distribution remains. 
It should be noted that a system with 5 states is considered as 
follows: one state has p(s1) = 0.8 and the remaining 4 states have 
equal probability p(s2, …, 5) = 0.05 hence C = 0.9988. This behav-
iour can be observed in the Gaussian distribution case discussed 
in Appendix C.

3.3. Issues and limitations
Some of the known issues, considerations, and limitations of this 
package are as follows:

 1. The statistical measures proposed are mainly based on 
Shannon’s discrete and differential entropy (i.e., H(X)) per 
symbol.

 2. Our proposed measures only consider I.I.D. random vari-
ables. Thus, conditional time relations or strings size > 1 are 
not considered. The former is particularly important when 
analyzing a distribution. For instance, if a discrete sequence 
of repeating points, e.g., 0, 1, 2, 0, 1, 2, … is analyzed in terms 
of each number, the distribution will resemble a uniform 
distribution; hence, E = 1. However, if the states of the system 
are strings of 3 elements, the distribution will be Dirac delta 
S = 1.

http://www.frontiersin.org/Robotics_and_AI
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 3. In order to obtain some preliminary results when calculating 
continuous complexity, it should be considered the size of the 
integration step Δ. In this context, if Δ ≈ 0 then H(x) = −∞, 
which could induce a spurious decay of EC values (interested 
reader please refer to Santamaría-Bonfil et al. (2016) for more 
details).

 4. Emergence value is understood as E = K*H(X) constraining 
it to 0 ≤ E ≤ 1 by the normalizing constant K (Fernández 
et  al., 2014). This constant value is calculated as K  =  1/
log(b) where b is the system’s alphabet size. Since, log(b), 
corresponds to the maximum entropy for any probability 
distribution with b symbols, E is the ratio between the 
entropy for a given distribution P(X), and the maximum 
entropy for the same alphabet size (Santamaría-Bonfil et al., 
2016). Therefore, if b is not provided, a heuristic is employed 
with the aim to compute the total number of symbols from 
P(X) that satisfies p(x) > 0 (both for discrete and complexity 
measures).

 5. These ESC measures are univariate.

4. Code eXAMPle: 
eXAMPleCoMPleXITYMeASUReS

In this section, we present an example that shows the functional-
ity of our complexity measures (additional details are provided 
at Appendix C). First, we present the overall functionality of the 

example and how it should be edited. Octave 4.0.3. or Matlab 
2013a are required to run these complexity functions. We highly 
recommend to the reader to use as templates the examples and 
complexity measures from the publicly available Entropy-based 
Complexity repository.

The example ExampleComplexityMeasures, is basically divided 
in two sections (1) discrete examples, and (2) continuous exam-
ples. In either case, ESC measures are simultaneously calculated, 
and stored in variable ESC to make a 3D Bar plot as follows:

[Emrgnc, SlfRgnztn, Cmplxty] = …
DiscreteComplexityMeasures(pmfSample, 
noOfStates);
ESC = [Emrgnc, SlfRgnztn, Cmplxty];
typeLabel = [’Feature1’;’Feature2’];
figure (1);
width = 1;
bar3DPlot(ESC,width,typelabes);

4.1. How to Modify the example?
First, you must choose between discrete or continuous examples. 
Next, you need to specify the working directory and the dataset. 
Some datasets from the University of California Irvine were 
provided in advance (UCI) (Lichman, 2013) in mat format: (a) 
frequency of three types of solar flares per 24 h, (b) the bicycle rides 
made per day and hour for a station within a bicycle sharing system, 
and (c) household electric consumption per minute for a whole house 

FIGURe 2 | Continuous e, S, and C for a power-law with a fixed xmin = 3 and scale exponents α = 2, …, 11. Note that as the scale exponent grows, E 
decays product of the concentration of distribution around the xmin value. However, even for α = 11, a considerable amount of complexity is displayed C ≈ 0.37. The 
latter is product of the heavy-tail of the distribution. Also note that C is high for 2 ≤ α ≤ 4 where C ≈ 0.95, 0.99, 0.93, respectively. The max C can be shifted to 
lower or higher scale exponents by xmin, which may be convenient to describe real-world phenomena.
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FIGURe 3 | (A) Solar flares (B) bike-sharing system datasets. For the first set, high self-organization is appreciated for each type of solar flare class. As solar flares 
become larger in magnitude, its distribution becomes more organized (around a single state). Also, the number of possible states is reduced for larger magnitudes. 
Thus, the largest C is displayed by the common class. For the BSS dataset, we can observe that hourly usage is more uniformly distributed between its states, thus 
a higher E, than daily. Even while, hourly and daily usage have lower organization, the usage of the latter reaches a higher C ≈ 0.79, since its distribution is highly 
concentrated around the mean value, with many lower but uniformly distributed states around it.

metering and kitchen submetering. These must be downloaded to 
the working directory. For the example of continuous complexity 
measures, a probability distribution data are generated on the fly. 
Any other dataset to work with must be in mat format.

The working directory is specified (a) via Matlab/Octave user 
interface, or (b) by setting the path via code as is shown.

filePath = ’C:\HereSetYourPath\’;

http://www.frontiersin.org/Robotics_and_AI
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FIGURe 4 | (A) Gaussian distribution (B) Power-law distribution. For the first, several SDs were tested σ = 1, …, 10. Note that the highest balance between S and E 
is constrained between 1 ≤ σ ≤ 3. As σ becomes larger, distribution becomes more uniform, thus, less complex. For the second, parameters were α = 5, and 
xmin = 1, …, 10. We can observe that as xmin value increases, so does the relation between a state with high probability and many others with lower one. It is known 
that for a system to be described as power-law its values must satisfy xi > xmin. Thus, a high C may be a good proxy of the proper xmin value required (in this figure 
xmin ≥ 4).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


8

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

Next, you must choose the type of complexity measure: 1 for 
discrete and 2 for differential.

complexityType = 1; %Discrete complexity 
measures
%complexityType = 2; %Continuous complexity 
measures

If discrete complexity function is chosen:
Specify the dataset to be employed:

dataSet = 1; load([filePath SolarFlaresData]);
% dataSet = 2; load([filePath BikeSharingData]);
% dataSet = 3; load([filePath 

HouseElecCnsmpt Data]);

Also, you may specify the number of states (noOfStates) the 
system will have, 10 is an educated guess.

noOfStates  =  10;%Number of states of the 
system

Finally, calculate ESC measures as follows:

[Emrgnc,
SlfRgnztn,
Cmplxty] = DiscreteComplexityMeasures(…

pmfSample,noOfStates);

For illustrative purposes, we chose as pmfSample the household 
electric consumption described in Appendix C. The correspond-
ing results are shown in Figure 1.

If continuous complexity function is chosen:
Probability Density Functions are used to estimate Gaussian 

and Power-Law (PL) distributions. In the former, a pre-pro-
grammed language function is employed, whereas in the latter, we 
implemented our own probability function. In either case, some 
parameters are required: distSampleSize and distParamNum. 
The first determines the integration sampling step. The second 
is the number of parameters that our probability distribution 
will have (in the Normal distribution case, different σ values are 
used, whereas, in the PL distribution, distinct xmin and α values 
are employed).

distSampleSize = 100000;
distParamNum = 10;

Next, specify variable pdfType to select either, 1 Gaussian, or 
2 PL distribution.

pdfType = 1;% Gaussian Distribution
% pdfType = 2;% Power-law Distribution

Also, you must specify the noOfStates as in the discrete case. 
Variable plotPDFOn =  {0, 1} can be used to plot PDF’s for the 
different parameters. Finally, calculate ESC measures for a PDF 
by calling the function as follows:
[Emrgnc,
SlfRgnztn,
Cmplxty] = ContinuousComplexityMeasures(

pdfDist,minVal,maxVal, …
distSampleSize,noOfStates);

For illustrative purposes we chose as the pdfSample a power-
law with parameters xmin = 3 and α = 2, …, 11. The corresponding 
results are shown in Figure 2.

5. dISCUSSIoN

In this paper, we presented two functions to calculate entropy-
based complexity measures: Emergence, Self-Organization, and 
Complexity. These measures can be employed for discrete samples 
or continuous probability distributions. The inputs and outputs 
for these two functions were described, and a code example for 
testing complexity functions was provided. Additionally, code 
snippets and dataset descriptions are provided in Appendixes A, 
B, and C, respectively.

Additional notes need to be made. First, for pedagogical 
purposes these functions were developed using GNU Octave 
language. However, they can be easily extended to R or Python. 
Note that for a fast computation process, the implementation of 
these measures on other languages will require vector and matrix 
operations, loop usage is discouraged. Second, these functions 
only are designed to calculate discrete and continuous complexity 
of univariate systems. Thus, a measure for multivariate systems 
is required. A fast proxy for multivariate entropy calculation 
could be the summation of each feature entropy. Consequently, 
Emergence could be calculated as the ratio of i i

i i

H X

N log b
∑
∑

( )
( )2

, where N 
is the number of system variables, and bi is the alphabet for each 
variable. However, further research about this issue is required. 
Third, a further extension of this research includes the usage of 
the continuous entropy to calculate discrete complexity meas-
ures to provide more sensible results for any given probability 
mass function. Also, because these measures only describe the 
complexity at the level of symbols in the alphabet rather than on 
strings, conditional entropy should be used in future work. Such 
function can provide the average entropy growth for both, IID 
random variables and stochastic processes. Particularly the latter 
feature would be convenient for analyzing the complexity of time 
series and dynamical processes with memory.
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APPeNdIX

A. discrete Complexity Measures

function [
emergence, …
selfOrganization, …
complexity, …
varargout] = …
DiscreteComplexityMeasures(stringSample, 
varargin)
%This function calculates Discrete Complexity 
Measures
%for discrete samples.
%First, we get the number of observations
%contained in the sample.
measLen = length(stringSample);
%If the number of states of the PMF
%is known beforehand
if(~isempty(varargin))

%Calculate the marginal states probability
no_States = varargin{1};
margSttProb = (hist(…

stringSample,no_States)./measLen)’;
else%Use an heuristic to obtain the PMF

%Obtain the system’s unique states.
sysStates = unique(stringSample);
if(size(sysStates,2) > 1)

sysStates = sysStates’;
end
%Get the length of the unique states.
%And calculate the marginal states 
probability
no_States = length(sysStates);
margSttProb = zeros(length(sysStates), 1);
for i = 1:no_States

margSttProb(i,1) = (nnz(…
ismember(…
stringSample,sysStates(i))))/
measLen;

end
end
%Define the normalizing constant k
if(no_States = = 1)

kConst = 1;
else

kConst = 1/log2(no_States);
end
%Then, calculate entropy for all elements
%of the PMF with p(x) > 0
ind = margSttProb > 0;
entropy  =  Sum(margSttProb(ind,1).*log2(marg
SttProb(ind,1)));
%Calculate ESC measures
emergence = (-1)*kConst*entropy;
selfOrganization = 1 - emergence;
complexity = 4 * emergence * selfOrganization;

varargout1 = entropy;
end

B. Continuous Complexity Measures

function [
emergence, …
selfOrganization, …
complexity, …
varargout] = …
ContinuousComplexityMeasures(…
pdfSample, varargin)
minVal = varargin{1};
maxVal = varargin{2};
distSampleSize = varargin{3};
%Determine a integration interval Delta
%Remember that by definition
%for really small Deltas the entropy
%is negative and can become -infinity
Delta = (maxVal-minVal)/(distSampleSize);
%Use the provided Probability Distribution 
Function
%to determine the non-zero elements of the 
PDF
tempPdf = pdfSample;
ind = tempPdf > 0;
pdfNoZeros = sum(ind);
%Calculate Differential Entropy
%for the non-zero elements of the PDF
rightHandSide = -1*log2(Delta);
leftHandSide  =  (-1)*sum((Delta*tempPdf(ind)
).*log2(tempPdf(ind)));
lmtEntrpy = rightHandSide + leftHandSide;
diffEntrop = lmtEntrpy + log2(Delta);
%K constant to be determined by 1) the number of
%no-zeros probability elements,
%2) a large value (i.e. the sample size)
if(if(length(varargin) < 4))

if(distSampleSize < pdfNoZeros)
kConst = 1/log2(pdfNoZeros);

else
kConst = 1/log2(distSampleSize);

end
else

kConst = 1/log2(varargin4);
end
modfDiffEntrop = diffEntrop.*kConst;
if(modfDiffEntrop < 0)

emergence = 0;
selfOrganization = 1;
complexity = 0;

else
emergence = modfDiffEntrop;

selfOrganization = 1 - emergence;
complexity  =  4 * (emergence * 
selfOrganization);

end
end
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FIGURe A1 | e, S, and C for the global, kitchen, and indoor comfort electric consumption for several timescales. For the global consumption, note that 
as the scale of the measures turns coarser, the probability distribution becomes more uniform. The highest Cs, few states with high probability and many emergent 
new states, is given for the minute/hour consumption. Moreover, even while the consumption of energy presents many new patterns for coarser measurement 
scales (i.e., week), cyclical and seasonal components remain considerable high (C ≈ 0.78). In fact, the same ESC behavior can be observed for the comfort energy 
usage give its high correlation with the whole house consumption. On the other hand, the kitchen electricity usage is highly self-organized (i.e., regular) for the 
minute and hour scales; however, self-organization quickly decays for the day time scale. Thus, kitchen’s daily electric consumption even while regular presents rich 
new patterns of usage (e.g., dinner with old friends).

C. experimental description

In the following, experimental results are briefly described. To 
demonstrate the functionality of E, S, and C, two types of experi-
ments were performed. On the one hand, discrete complexity 
measures using publicly available machine learning datasets 
were tested. On the other hand, continuous complexity measures 
using probability density functions were employed. For the 
discrete datasets, we used noOfStates = 10, whereas for the con-
tinuous case, we used noOfStates = 50. Only real-world datasets 
are described. For continuous complexity measures Gaussian 
and Power-Law distributions were used, however, since these 
probability distributions have been well documented elsewhere 
(Santamaría-Bonfil et al., 2016), no further details are provided. 
Results for the discrete measures for, the solar flares and the 
bike-sharing system datasets are shown in Figure 3, whereas for 
probability distributions are presented in Figure 4.

C.1. Solar Flares
A solar flare occurs when magnetic energy that has built up in 
the solar atmosphere is suddenly released. UCI’s dataset contains 
three types of classes categorized by their magnitude and fre-
quency. For each class, the number of solar flares of a certain class 
that occur in a 24-h period are counted.1 The variables analyzed 

1 https://archive.ics.uci.edu/ml/datasets/Solar+Flare.

are three types of solar flares: (a) C-class flares, which are com-
mon, (b) M-class flares, which are flares of moderate size, and 
(c) X-class flares, which constitute flares of a severe magnitude.

C.2. Bike-Sharing System
Bike-sharing systems (BSS) are a new generation of urban mobil-
ity systems, composed by bicycles which are rented to subscrib-
ers for these to travel short to medium distances. These type of 
systems can be scrutinized from a large-scale statistic point of 
view.2 In these experiments, BSS data consist in the total count 
of bicycle rentals per hour including both, casual and registered 
users. Further details can be obtained from Fanaee-T and Gama 
(2013), and UCI’s repository (Lichman, 2013).

C.3. Individual Household Electric Power 
Consumption Dataset
The need for a more efficient lifestyle requires to parametrize sev-
eral aspects of human activities. Household electric consumption 
provides information not only to casual/conscious consumers 
but also to providers and grid managers. In these experiments, 
measurements of electric power consumption in one household 
with a 1-min sampling rate over a period of almost 4 years were 

2 https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.
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used.3 We employed ~1 million observations of two variables: (a) 
the global household active power, which corresponds to global 
measures of the minute-averaged active power in kilowatts and 
(b) Kitchen energy sub-metering, which corresponds to measure-
ments from a kitchen containing a dishwasher, an oven, and a 
microwave.

D. Example: Analyzing Timescales
In the previous section, numeric results of different phenomena 
and parameters of distributions were presented. In this section, 
we provide results for the analysis of multiple timescales. For such 
purposes, we employed the largest dataset available which is the 

3 https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+
consumption#.

household electric consumption. In the former example, only 
half of the dataset was employed. For this example, ~2 million 
points were used. The different timescales that were analyzed are 
minute, hour, day, week, and month. Further, we added another 
variable to the analysis, indoor comfort which consists of an 
electric water-heater and an air-conditioner. It was considered 
because indoor comfort represents around 60% of a building 
energy consumption.

First, we remove missing data points. Then, data were aver-
aged in accordance to the aforementioned timescales. Next, we 
calculate Emergence, Self-organization, and Complexity, for 
the house’s global, kitchen, and indoor comfort active power. 
Results for the complexity measures are presented in Figure A1. 
The code for this example is provided in the Github repository 
(Santamaría-Bonfil, 2016) with the name Example2Complexity 
Measures.m.
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