
March 2017 | Volume 4 | Article 101

Code
published: 28 March 2017

doi: 10.3389/frobt.2017.00010

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Zbigniew R. Struzik,

University of Tokyo, Japan

Reviewed by:
Hector Zenil,

Karolinska Institutet, Sweden
Sebastian Wallot,

Max Planck Institute for Empirical
Aesthetics (MPG), Germany

Víctor M. Eguíluz,
Instituto de Física Interdisicplinary

Sistemas Complejos IFISC
(CSIC-UIB), Spain

*Correspondence:
Guillermo Santamaría-Bonfil

gsantamaria@conacyt.mx,
guillermo.santamaira@iie.org.mx;

Carlos Gershenson
cgg@unam.mx,

cgg@mit.edu;
Nelson Fernández

nfernandez@unipamplona.edu.co

Specialty section:
This article was submitted to

Computational Intelligence,
a section of the journal

Frontiers in Robotics and AI

Received: 25 November 2016
Accepted: 03 March 2017
Published: 28 March 2017

Citation:
Santamaría-Bonfil G, Gershenson C
and Fernández N (2017) A Package

for Measuring Emergence,
Self-organization, and Complexity

Based on Shannon Entropy.
Front. Robot. AI 4:10.

doi: 10.3389/frobt.2017.00010

A Package for Measuring
emergence, Self-organization, and
Complexity Based on Shannon
entropy
Guillermo Santamaría-Bonfil1*, Carlos Gershenson2,3,4,5* and Nelson Fernández6,7*

1 CONACYT-Instituto Nacional de Electricidad y Energías Limpias, Gerencia de Tecnologías de la Información, Cuernavaca,
Morelos, México, 2 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de
México, Ciudad de México, México, 3 Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México,
Mexico City, Distrito Federal, México, 4 SENSEable City Lab, Massachusetts Institute of Technology, Cambridge, MA, USA,
5 ITMO University, St. Petersburg, Russian Federation, 6 Laboratorio de Hidroinformática, Universidad de Pamplona,
Pamplona, Colombia, 7 Grupo de Investigación en Ecología y Biogeografía, Universidad de Pamplona, Pamplona, Colombia

We present a set of Matlab/Octave functions to compute measures of emergence,
self-organization, and complexity applied to discrete and continuous data. These
measures are based on Shannon’s information and differential entropy. Examples from
different datasets and probability distributions are provided to show how to use our
proposed code.

Keywords: emergence, self-organization, complexity, machine learning datasets, code:octave/Matlab

1. deSCRIPTIoN

Complexity has generated interest in recent years (Bar-Yam, 1997; Mitchell, 2009; Haken and
Portugali, 2017). A complex system can be understood as one composed by many elements, which
acquire functional/spatial/temporal structures without a priori specifications (Haken and Portugali,
2017). It has been studied in several disciplines, as one can try to measure the complexity of almost
any phenomenon (Lopez-Ruiz et al., 1995; Bandt and Pompe, 2002; Prokopenko et al., 2009; Lizier,
2014; Soler-Toscano et al., 2014; Haken and Portugali, 2017). Thus, there exist a broad variety of
measures of complexity where Shannon’s entropy and its generalizations have played a crucial role
(Haken and Portugali, 2017). For instance, permutation entropy have been proposed for analyzing
the complexity of time series in terms of its periodicity/chaoticity/randomness (Bandt and Pompe,
2002), whereas the LMC Complexity describe it in terms of equilibrium and disequilibrium (Lopez-
Ruiz et al., 1995). Nevertheless, it should be noted that all measures of complexity have limits (Zenil
and Kiani, 2016). Thus, it is important to promote the quantitative study of complexity through
mathematical frameworks to enhance the exchange of ideas, for instance:

 1. The Java Information Dynamics Toolkit presents a multi-platform library to calculate complex-
ity of dynamical systems using Shannon’s entropy (e.g., information transfer) for discrete and
continuous data (Lizier, 2014).

 2. The Online Algorithmic Complexity Calculator OACC, provides discrete estimations using
Shannon entropy and the algorithmic complexity.

 3. The Algorithmic Complexity for Short Strings (ACSS), for the R language, computes the
Kolmogorov complexity for short strings (Soler-Toscano et al., 2014; Gauvrit et al., 2016; Zenil
et al., 2016).

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00010&domain=pdf&date_stamp=2017-03-28
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00010
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:gsantamaria@conacyt.mx
mailto:guillermo.santamaira@iie.org.mx
mailto:cgg@unam.mx
mailto:cgg@mit.edu
mailto:nfernandez@unipamplona.edu.co
https://doi.org/10.3389/frobt.2017.00010
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00010/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00010/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00010/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00010/abstract
http://loop.frontiersin.org/people/186860
http://loop.frontiersin.org/people/142875
http://loop.frontiersin.org/people/278212

TABle 1 | Summary for discrete and continuous complexity octave/
Matlab functions.

Function or filename Functionality

DiscreteComplexityMeasures
(pmfSample, noOfStates)

This function calculates discrete
entropy-based complexity measures for
a univariate sample in accordance to the
number of the sample’s system states

ContinuousComplexityMeasures
(pdfSample, minVal, maxVal,
distSampleSize, noOfStates)

This function calculates continuous
entropy-based complexity measures
for a probability density distribution
in accordance to the minimum and
maximum values such distribution takes,
the integration step, and the number of
system’s states

bar3DPlot (M, width, param1Labels,
param2Labels)

This function makes a 3D bar to
graphically display ESC Measures

2

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

In this manuscript, we present a package to calculate statistical
measures of emergence E, self-organization S, and complexity C
which are applicable to any dataset or probability distributions
(Fernández et al., 2014; Santamaría-Bonfil et al., 2016). These are
closely related to other Shannon-based measures (Lopez-Ruiz
et al., 1995; Jost, 2006). In this regard, discrete measures are cal-
culated employing the discrete Shannon’s entropy. Rosetta Code
website already provides code for Shannon’s discrete entropy in
62 different programming languages (e.g., C, C++, Java, Matlab/
Octave, R, Python). On the other hand, continuous measures are
calculated using Shannon’s differential entropy.

A previous effort of Fernández et al. (2014) is provided in
COMIN; however, it is rather a prototype. Specifically, our main
contributions are as follows: (a) a software bundle to compute
discrete and continuous statistical complexity measures; (b)
examples on how to use both measures to analyze probability
distributions and different timescales; (c) code comments to
enhance usability; (d) vector and matrix operations to improve
the computation time. This package was coded in Octave GNU
4.0.3, checked for compatibility in Matlab2013a, and is publicly
available at the web repository Entropy-based Complexity1
(Santamaría-Bonfil, 2016). In Appendices A and B, code snippets
of the function are provided.

This paper is organized as follows. Section 2 briefly describes
theory on discrete and continuous complexity measures. Section
3 provides an overview of the code functions, their inputs and
outputs (summarized in Table 1). It also provides guidelines in
results interpretation, issues, and limitations. Section 4 presents
two examples (one per function) to introduce users to the basic
usage of the developed functions. Finally, Section 5 presents a
discussion on future development topics around entropy-based
complexity measures.

In Appendix C, numeric results for the code examples are
provided (three machine learning datasets2 (Fanaee-T and
Gama, 2013; Lichman, 2013) and two probability distributions).
Furthermore, in Appendix D, we provide an example on the
use of our complexity measures to analyze a system at different
timescales.

2. MeTHod: eMeRGeNCe, SelF-
oRGANIZATIoN, ANd CoMPleXITY

In this section, we describe the statistical measures of E, S, and
C. Discrete measures were defined in a previous study presented
in Fernández et al. (2014), latter extended for continuous prob-
ability distributions (Santamaría-Bonfil et al., 2016). This package
is limited to the aforementioned measures. Proofs, advantages,
and limitations are defined and discussed in Fernández et al.
(2014) and Santamaría-Bonfil et al. (2016). Furthermore, for
simplicity, differences between discrete and the continuous will
be mentioned when necessary.

Many notions of Emergence describe it as novelty (between
scales, in time, or within a process). E can be understood as new

1 https://doi.org/10.5281/zenodo.166566.
2 http://archive.ics.uci.edu/ml.

global patterns which are not present in the system’s components.
More precisely, for a discrete probability distributions, E meas-
ures the average ratio of uncertainty a process produces by new
information that is a consequence of changes in (a) dynamics
or (b) scale. For continuous distributions, E interpretation is
constrained to the average uncertainty a process produces under
a specific set of the distribution parameters (e.g., the SD value for a
Gaussian distribution) (Santamaría-Bonfil et al., 2016). Formally,
the discrete and continuous E are defined as follows:

 E K p pD i ii
N= −
=∑ log 21

 E K H XC = − + ∆∆→
∆(lim () log ())0 2 (1)

ED in equation (1) corresponds to the discrete E, where
pi = P(X = x) is the probability of the element i. EC in equation (1)
corresponds to the continuous E. Note that the latter is rather
a quantized version of the differential entropy, where XΔ corre-
sponds to discretized version of X, and Δ is the integration step.
On the other hand, K is a normalizing constant that constrains E
within the range 0 ≤ E ≤ 1. It is estimated as

 K
b

= ,
1

2log ()
 (2)

where b corresponds to the system’s alphabet size: the number
of bins of a probability mass function, or, in the continuous
case, to the states that satisfies P(xi) > 0. More importantly, the
denominator of equation (2), log2(b), corresponds to the maxi-
mum entropy for a distribution function with alphabet size of
b. Consequently, E can be understood as the ratio between the
entropy for given distribution H(X), and the maximum entropy
for the same alphabet size H(U), E H X

H U= ()
() .

It is also worth noting that, ED = 0 is only achievable when the
entropy for a given probability distribution is such that H(X) = 0,
which corresponds to the entropy of a Dirac delta distribution.
However, in the continuous case the differential entropy of a
Dirac delta or a discrete value is −∞. Nonetheless, differential
entropy only becomes negative when the probability distribution
becomes extremely concentrated in very few states. Thus, when
calculating our statistical continuous complexity measures, we set
H(xi) = 0 iff H(xi) < 0.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://rosettacode.org/wiki/Entropy
https://github.com/dlizcano/Comin/commits/v0.1
https://github.com/Alveuz/EntropyB_Complexity
https://doi.org/10.5281/zenodo.166566
http://archive.ics.uci.edu/ml

3

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

Self-organization, in its most general form, can be seen as
a reduction of entropy (Gershenson and Heylighen, 2003). S
is the complement of E, thus, self-organization is related to
order and regularity due changes in the process dynamics or
scale. In this sense, an entirely random process (e.g., uniform
distribution) has the lowest organization and a completely
deterministic system one (Dirac delta distribution) has the
highest. S is defined as

 S E H P X
H U

= − = −

,1 1 (())

()
 (3)

such that 0 ≤ S ≤ 1.
Complexity comes from the Latin plexus, which means inter-

woven. Thus, something complex is difficult to separate. This
means that its components are interdependent, i.e., their future is
partly determined by their interactions. Complexity represents a
balance between change and regularity (Kaufmann, 1993), which
allows systems to adapt in a robust fashion. Regularity ensures that
information survives, while change allows the exploration of new
possibilities, essential for adaptability. In this sense, complexity
can also be used to characterize living systems or artificial adap-
tive systems, especially when comparing their complexity with
that of their environment (Fernández et al., 2014). More precisely,
this function describes a system’s behavior in terms of the average
uncertainty produced by emergent and regular global patterns
as described by its probability distribution. Thus, the complexity
measure is defined as

 C E S= ⋅ ⋅ ,4 (4)

such that, 0 ≤ C ≤ 1. C is only maximal when E and S are equal
(i.e., E = S = 0.5). In Fernández et al. (2014) they showed that for
a variable with only two states, the highest C is achieved when one
of the states is highly probable, i.e., ≈0.89. Thus, it infers that a
system which concentrates its dynamics into few highly probable
states with many less frequent states, displays high complexity
(e.g., a power-law distribution). C becomes 0 for equiprobable
distributions.

3. FUNCTIoNS oF CoMPleXITY
MeASUReS

The complexity of different phenomena can be calculated using
entropy-based measures. However, to obtain meaningful results,
users must first determine the adequate function to be employed
for their problem (e.g., should a raw sample or an estimated prob-
ability distribution function be used?). In this section, we describe
two functions for complexity: DiscreteComplexityMeasures, and
ContinuousComplexityMeasures. We provide details on the inputs
and outputs required by these complexity functions. In addition,
we also provide a graphical function to display emergence, self-
organization, and complexity (ESC); we take no authorship of it
since it is freely available on the internet3; nonetheless, in the next
section, we provide details of its functionality.

3 http://stackoverflow.com/questions/24180890/3d-histogram-with-gnuplot-or-
octave, accessed 30/10/2016.

3.1. Functions definition
DiscreteComplexityMeasures, and ContinuousComplexityMea-
sures are briefly summarized at Table 1. In the following, inputs
and outputs are detailed.

3.1.1. Inputs

 1. DiscreteComplexityMeasures(pmfSample, noOfStates)
 (a) pmfSample is a vector of size n × 1 which corresponds

to n real values displayed by a given system, e.g., a time
series.

 (b) noOfStates is an integer ≥2 that defines the number of
states to coarse grain the given sample. If it is empty, a
heuristic is used to calculate the number of system states.

 2. ContinuousComplexityMeasures(pdfSample, varargin)
 (a) pdfSample is a vector of size n × 1, which contains the n

probability values assigned by the probability distribu-
tion function (i.e., f(x) = P(x)).

 (b) Additional parameters are:
 i. minVal, it’s a real value corresponding to the mini-

mal value where the PDF will be evaluated.
 ii. maxVal, it’s a real value corresponding to the ma-

ximal value where the PDF will be evaluated. It is
strictly necessary that minVal < maxVal.

 iii. distSampleSize, is an integer value which correspon-
ds to an approximate sample size. This value is used
to estimate the integration step ∆ = −maxVal minVal

distSampleSize .
 iv. noOfStates is an integer value used to define the

number of possible states a system can take. As its
discrete counterpart, it should satisfy that ≥2. In par-
ticular, noOfStates should be large to satisfy 0 ≤ E,
S, C ≤ 1. If not provided, a heuristic is employed to
obtain it.

 3. bar3DPlot(M, width, param1Labels, varargin)
 (a) M is n × 3 or n × m matrix. For the former, rows corre-

spond to a feature of a system whereas its columns are
the corresponding E, S, C, respectively. For the latter,
columns are rather a parameter of the system, thus, only
one ESC measure can be displayed at a time.

 (b) width determines each bar size, this value ranges from
 (c) 0 < width ≤ 1.
 (d) param1Labels this parameter is n × 1 label matrix. It

contains the corresponding labels for each row of M.
 (e) When M is a n × m matrix, additional labels are requi-

red. param2Labels is n × 1 label matrix which contains
the corresponding labels for each column of M.

3.1.2. Outputs
Complexity measure functions return 4 elements: three manda-
tory outputs Emergence, Self-organization, Complexity, and an
optional one, which corresponds to data’s discrete or continuous
entropy.

3.2. Results Interpretation
E, S, and C measures provide a big picture about the expected
uncertainty that belongs to a system in terms of its probability
distribution product of (a) a reduction/increase of system’s states

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://stackoverflow.com/questions/24180890/3d-histogram-with-gnuplot-or-octave
http://stackoverflow.com/questions/24180890/3d-histogram-with-gnuplot-or-octave

FIGURe 1 | discrete e, S, and C for a single household electric consumption. These data correspond to time series of energy consumption per minute for a
whole house and its kitchen. Note that the electricity consumption for the whole house has complexity near 1, while the kitchen is rather highly self-organized. In the
former, the results imply that a single or few energy consumption states concentrate most of the probability (i.e., regular patterns) with many new emergent states of
usage. In the latter, kitchen’s energy consumption is more regular and more predictable. In fact most of the time kitchen will not consume electricity (91% of the
probability is concentrated in the 0 energy consumption state). Kitchen also displays a C ≈ 0.27, which is the result of its periodic usage (e.g., meals during
workweeks).

4

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

(Gershenson and Fernández, 2012), or (b) the concentration/
homogenization of the probability distribution (Santamaría-
Bonfil et al., 2016). E is able to measure the change in scale
given a process that transforms information (Gershenson and
Fernández, 2012). For instance, E can be expressed as E H x

H x
out

in
= ()

() ,
where Hin is the initial entropy for a system, and Hout = f(Hin) is Hin
transformed by process f. On the other hand, for a given probabil-
ity distribution either discrete or continuous, if E is close to 1, the
system shows similar probability for most of its states. Otherwise,
if E ≡ 1, all states are equiprobable. Thus, if 0 < E ≪ 1, then,
system’s states distribution have few states with a considerable
amount of the probability, whereas if 0 ≪ E < 1 then, the states of
the system are more evenly distributed. Since S is the complement
of E, the above mentioned descriptions apply in a conversely way
to S. In this context, if S ≡ 1, the system can be considered to be
predictable since a single state xj has P(xj) ≈ 1. This interpretation
of E and S is shared by other Shannon-based measures like LMC
Complexity and statistical diversity (Lopez-Ruiz et al., 1995; Jost,
2006) (e.g., the disequilibrium of a crystal = the diversity of a
population with exactly 1 species = Smax = 1).

On the other hand, C = 1 only when E, S = 0.5. Such scenario is
given when a single or few state are highly concentrated in terms
of their probability, with many other states with lesser probabili-
ties. In this regard, C becomes 0 when the distribution resembles

a uniform distribution or a Dirac delta. Moreover, higher values
of C are required in order to the probability distribution remains.
It should be noted that a system with 5 states is considered as
follows: one state has p(s1) = 0.8 and the remaining 4 states have
equal probability p(s2, …, 5) = 0.05 hence C = 0.9988. This behav-
iour can be observed in the Gaussian distribution case discussed
in Appendix C.

3.3. Issues and limitations
Some of the known issues, considerations, and limitations of this
package are as follows:

 1. The statistical measures proposed are mainly based on
Shannon’s discrete and differential entropy (i.e., H(X)) per
symbol.

 2. Our proposed measures only consider I.I.D. random vari-
ables. Thus, conditional time relations or strings size > 1 are
not considered. The former is particularly important when
analyzing a distribution. For instance, if a discrete sequence
of repeating points, e.g., 0, 1, 2, 0, 1, 2, … is analyzed in terms
of each number, the distribution will resemble a uniform
distribution; hence, E = 1. However, if the states of the system
are strings of 3 elements, the distribution will be Dirac delta
S = 1.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

5

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

 3. In order to obtain some preliminary results when calculating
continuous complexity, it should be considered the size of the
integration step Δ. In this context, if Δ ≈ 0 then H(x) = −∞,
which could induce a spurious decay of EC values (interested
reader please refer to Santamaría-Bonfil et al. (2016) for more
details).

 4. Emergence value is understood as E = K*H(X) constraining
it to 0 ≤ E ≤ 1 by the normalizing constant K (Fernández
et al., 2014). This constant value is calculated as K = 1/
log(b) where b is the system’s alphabet size. Since, log(b),
corresponds to the maximum entropy for any probability
distribution with b symbols, E is the ratio between the
entropy for a given distribution P(X), and the maximum
entropy for the same alphabet size (Santamaría-Bonfil et al.,
2016). Therefore, if b is not provided, a heuristic is employed
with the aim to compute the total number of symbols from
P(X) that satisfies p(x) > 0 (both for discrete and complexity
measures).

 5. These ESC measures are univariate.

4. Code eXAMPle:
eXAMPleCoMPleXITYMeASUReS

In this section, we present an example that shows the functional-
ity of our complexity measures (additional details are provided
at Appendix C). First, we present the overall functionality of the

example and how it should be edited. Octave 4.0.3. or Matlab
2013a are required to run these complexity functions. We highly
recommend to the reader to use as templates the examples and
complexity measures from the publicly available Entropy-based
Complexity repository.

The example ExampleComplexityMeasures, is basically divided
in two sections (1) discrete examples, and (2) continuous exam-
ples. In either case, ESC measures are simultaneously calculated,
and stored in variable ESC to make a 3D Bar plot as follows:

[Emrgnc, SlfRgnztn, Cmplxty] = …
DiscreteComplexityMeasures(pmfSample,
noOfStates);
ESC = [Emrgnc, SlfRgnztn, Cmplxty];
typeLabel = [’Feature1’;’Feature2’];
figure (1);
width = 1;
bar3DPlot(ESC,width,typelabes);

4.1. How to Modify the example?
First, you must choose between discrete or continuous examples.
Next, you need to specify the working directory and the dataset.
Some datasets from the University of California Irvine were
provided in advance (UCI) (Lichman, 2013) in mat format: (a)
frequency of three types of solar flares per 24 h, (b) the bicycle rides
made per day and hour for a station within a bicycle sharing system,
and (c) household electric consumption per minute for a whole house

FIGURe 2 | Continuous e, S, and C for a power-law with a fixed xmin = 3 and scale exponents α = 2, …, 11. Note that as the scale exponent grows, E
decays product of the concentration of distribution around the xmin value. However, even for α = 11, a considerable amount of complexity is displayed C ≈ 0.37. The
latter is product of the heavy-tail of the distribution. Also note that C is high for 2 ≤ α ≤ 4 where C ≈ 0.95, 0.99, 0.93, respectively. The max C can be shifted to
lower or higher scale exponents by xmin, which may be convenient to describe real-world phenomena.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/Alveuz/EntropyB_Complexity
https://github.com/Alveuz/EntropyB_Complexity
http://archive.ics.uci.edu/ml

6

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

FIGURe 3 | (A) Solar flares (B) bike-sharing system datasets. For the first set, high self-organization is appreciated for each type of solar flare class. As solar flares
become larger in magnitude, its distribution becomes more organized (around a single state). Also, the number of possible states is reduced for larger magnitudes.
Thus, the largest C is displayed by the common class. For the BSS dataset, we can observe that hourly usage is more uniformly distributed between its states, thus
a higher E, than daily. Even while, hourly and daily usage have lower organization, the usage of the latter reaches a higher C ≈ 0.79, since its distribution is highly
concentrated around the mean value, with many lower but uniformly distributed states around it.

metering and kitchen submetering. These must be downloaded to
the working directory. For the example of continuous complexity
measures, a probability distribution data are generated on the fly.
Any other dataset to work with must be in mat format.

The working directory is specified (a) via Matlab/Octave user
interface, or (b) by setting the path via code as is shown.

filePath = ’C:\HereSetYourPath\’;

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

7

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

FIGURe 4 | (A) Gaussian distribution (B) Power-law distribution. For the first, several SDs were tested σ = 1, …, 10. Note that the highest balance between S and E
is constrained between 1 ≤ σ ≤ 3. As σ becomes larger, distribution becomes more uniform, thus, less complex. For the second, parameters were α = 5, and
xmin = 1, …, 10. We can observe that as xmin value increases, so does the relation between a state with high probability and many others with lower one. It is known
that for a system to be described as power-law its values must satisfy xi > xmin. Thus, a high C may be a good proxy of the proper xmin value required (in this figure
xmin ≥ 4).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

8

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

Next, you must choose the type of complexity measure: 1 for
discrete and 2 for differential.

complexityType = 1; %Discrete complexity
measures
%complexityType = 2; %Continuous complexity
measures

If discrete complexity function is chosen:
Specify the dataset to be employed:

dataSet = 1; load([filePath SolarFlaresData]);
% dataSet = 2; load([filePath BikeSharingData]);
% dataSet = 3; load([filePath

HouseElecCnsmpt Data]);

Also, you may specify the number of states (noOfStates) the
system will have, 10 is an educated guess.

noOfStates = 10;%Number of states of the
system

Finally, calculate ESC measures as follows:

[Emrgnc,
SlfRgnztn,
Cmplxty] = DiscreteComplexityMeasures(…

pmfSample,noOfStates);

For illustrative purposes, we chose as pmfSample the household
electric consumption described in Appendix C. The correspond-
ing results are shown in Figure 1.

If continuous complexity function is chosen:
Probability Density Functions are used to estimate Gaussian

and Power-Law (PL) distributions. In the former, a pre-pro-
grammed language function is employed, whereas in the latter, we
implemented our own probability function. In either case, some
parameters are required: distSampleSize and distParamNum.
The first determines the integration sampling step. The second
is the number of parameters that our probability distribution
will have (in the Normal distribution case, different σ values are
used, whereas, in the PL distribution, distinct xmin and α values
are employed).

distSampleSize = 100000;
distParamNum = 10;

Next, specify variable pdfType to select either, 1 Gaussian, or
2 PL distribution.

pdfType = 1;% Gaussian Distribution
% pdfType = 2;% Power-law Distribution

Also, you must specify the noOfStates as in the discrete case.
Variable plotPDFOn = {0, 1} can be used to plot PDF’s for the
different parameters. Finally, calculate ESC measures for a PDF
by calling the function as follows:
[Emrgnc,
SlfRgnztn,
Cmplxty] = ContinuousComplexityMeasures(

pdfDist,minVal,maxVal, …
distSampleSize,noOfStates);

For illustrative purposes we chose as the pdfSample a power-
law with parameters xmin = 3 and α = 2, …, 11. The corresponding
results are shown in Figure 2.

5. dISCUSSIoN

In this paper, we presented two functions to calculate entropy-
based complexity measures: Emergence, Self-Organization, and
Complexity. These measures can be employed for discrete samples
or continuous probability distributions. The inputs and outputs
for these two functions were described, and a code example for
testing complexity functions was provided. Additionally, code
snippets and dataset descriptions are provided in Appendixes A,
B, and C, respectively.

Additional notes need to be made. First, for pedagogical
purposes these functions were developed using GNU Octave
language. However, they can be easily extended to R or Python.
Note that for a fast computation process, the implementation of
these measures on other languages will require vector and matrix
operations, loop usage is discouraged. Second, these functions
only are designed to calculate discrete and continuous complexity
of univariate systems. Thus, a measure for multivariate systems
is required. A fast proxy for multivariate entropy calculation
could be the summation of each feature entropy. Consequently,
Emergence could be calculated as the ratio of i i

i i

H X

N log b
∑
∑

()
()2

, where N
is the number of system variables, and bi is the alphabet for each
variable. However, further research about this issue is required.
Third, a further extension of this research includes the usage of
the continuous entropy to calculate discrete complexity meas-
ures to provide more sensible results for any given probability
mass function. Also, because these measures only describe the
complexity at the level of symbols in the alphabet rather than on
strings, conditional entropy should be used in future work. Such
function can provide the average entropy growth for both, IID
random variables and stochastic processes. Particularly the latter
feature would be convenient for analyzing the complexity of time
series and dynamical processes with memory.

AUTHoR CoNTRIBUTIoNS

GS-B designed and coded ESC discrete and continuous Matlab/
Octave functions and performed the experiments. GS-B, CG, and
NF conceived and designed the experiments and wrote the paper.

ACKNoWledGMeNTS

The authors would like to thank Carlos Piña Ph.D. for the help in
editing and proofreading this manuscript. GS-B was supported
by the Consejo Nacional de Ciencia y Tecnología under the
Cátedra-Conacyt contract 969.

SUPPleMeNTARY MATeRIAl

The Supplementary Material for this article can be found
online at http://journal.frontiersin.org/article/10.3389/frobt.
2017.00010/full#supplementary-material.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://journal.frontiersin.org/article/10.3389/frobt.2017.00010/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/frobt.2017.00010/full#supplementary-material

9

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

ReFeReNCeS

Bandt, C., and Pompe, B. (2002). Permutation entropy: a natural complexity mea-
sure for time series. Phys. Rev. Lett. 88, 174102. doi:10.1103/PhysRevLett.88.
174102

Bar-Yam, Y. (1997). Dynamics of Complex Systems. Studies in Nonlinearity. Boulder,
CO, USA: Westview Press.

Fanaee-T, H., and Gama, J. (2013). Event labeling combining ensemble detectors
and background knowledge. Prog. Artif. Intel. 2, 1–15. doi:10.1007/s13748-013-
0040-3

Fernández, N., Maldonado, C., and Gershenson, C. (2014). “Information measures
of complexity, emergence, self-organization, homeostasis, and autopoiesis,” in
Guided Self-Organization: Inception, Volume 9 of Emergence, Complexity and
Computation, ed. M. Prokopenko (Berlin, Heidelberg: Springer), 19–51.

Gauvrit, N., Singmann, H., Soler-Toscano, F., and Zenil, H. (2016). Algorithmic
complexity for psychology: a user-friendly implementation of the coding theo-
rem method. Behav. Res. Methods 48, 314–329. doi:10.3758/s13428-015-0574-3

Gershenson, C., and Fernández, N. (2012). Complexity and information:
measuring emergence, self-organization, and homeostasis at multiple scales.
Complexity 18, 29–44. doi:10.1002/cplx.21424

Gershenson, C., and Heylighen, F. (2003). “When can we call a system self-orga-
nizing?,” in Advances in Artificial Life, 7th European Conference, ECAL 2003
LNAI 2801, eds W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler
(Berlin: Springer), 606–614.

Haken, H., and Portugali, J. (2017). Information and self-organization. Entropy 19,
18. doi:10.3390/e19010018

Jost, L. (2006). Entropy and diversity. Oikos 113, 363–375. doi:10.1111/
j.2006.0030-1299.14714.x

Kaufmann, S. (1993). The Origins of Order. New York: Oxford University Press, Inc.
Lichman, M. (2013). UCI Machine Learning Repository.
Lizier, J. (2014). JIDT: an information-theoretic toolkit for studying the dynamics

of complex systems. Front. Robot. AI 1:11. doi:10.3389/frobt.2014.00011
Lopez-Ruiz, R., Mancini, H., and Calbet, X. (1995). A statistical measure of com-

plexity. Phys. Lett. A 209, 321–326. doi:10.1016/0375-9601(95)00867-5

Mitchell, M. (2009). Complexity: A Guided Tour. Oxford, UK: Oxford University
Press.

Prokopenko, M., Boschetti, F., and Ryan, A. (2009). An information-theoretic
primer on complexity, self-organisation and emergence. Complexity 15, 11–28.
doi:10.1002/cplx.20249

Santamaría-Bonfil, G. (2016). GitHub Repository: Complexity Measures Functions.
Santamaría-Bonfil, G., Fernández, N., and Gershenson, C. (2016). Measuring

the complexity of continuous distributions. Entropy 18, 72. doi:10.3390/
e18030072

Soler-Toscano, F., Zenil, H., Delahaye, J., and Gauvrit, N. (2014). Calculating
Kolmogorov complexity from the output frequency distributions of
small Turing machines. PLoS ONE 9:e96223. doi:10.1371/journal.pone.
0096223

Zenil, H., and Kiani, N. A. (2016). Low algorithmic complexity entropy-deceiving
graphs. CoRR, 1–21. abs/1608.05972. arXiv:1608.05972.

Zenil, H., Soler-Toscano, F., Kiani, N. A., Hernández-Orozco, S., and Rueda-Toicen,
A. (2016). A decomposition method for global evaluation of shannon entropy
and local estimations of algorithmic complexity. arXiv:1609.00110.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer HZ declared a past co-authorship with one of the authors (CG) to
the handling Editor, who ensured that the process met the standards of a fair and
objective review.

Copyright © 2017 Santamaría-Bonfil, Gershenson and Fernández. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1103/PhysRevLett.88.
174102
https://doi.org/10.1103/PhysRevLett.88.
174102
https://doi.org/10.1007/s13748-013-
0040-3
https://doi.org/10.1007/s13748-013-
0040-3
https://doi.org/10.3758/s13428-015-0574-3
https://doi.org/10.1002/cplx.21424
https://doi.org/10.3390/e19010018
https://doi.org/10.1111/
j.2006.0030-1299.14714.x
https://doi.org/10.1111/
j.2006.0030-1299.14714.x
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.1016/0375-9601(95)00867-5
https://doi.org/10.1002/cplx.20249
https://doi.org/10.3390/
e18030072
https://doi.org/10.3390/
e18030072
https://doi.org/10.1371/journal.pone.
0096223
https://doi.org/10.1371/journal.pone.
0096223
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

10

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

APPeNdIX

A. discrete Complexity Measures

function [
emergence, …
selfOrganization, …
complexity, …
varargout] = …
DiscreteComplexityMeasures(stringSample,
varargin)
%This function calculates Discrete Complexity
Measures
%for discrete samples.
%First, we get the number of observations
%contained in the sample.
measLen = length(stringSample);
%If the number of states of the PMF
%is known beforehand
if(~isempty(varargin))

%Calculate the marginal states probability
no_States = varargin{1};
margSttProb = (hist(…

stringSample,no_States)./measLen)’;
else%Use an heuristic to obtain the PMF

%Obtain the system’s unique states.
sysStates = unique(stringSample);
if(size(sysStates,2) > 1)

sysStates = sysStates’;
end
%Get the length of the unique states.
%And calculate the marginal states
probability
no_States = length(sysStates);
margSttProb = zeros(length(sysStates), 1);
for i = 1:no_States

margSttProb(i,1) = (nnz(…
ismember(…
stringSample,sysStates(i))))/
measLen;

end
end
%Define the normalizing constant k
if(no_States = = 1)

kConst = 1;
else

kConst = 1/log2(no_States);
end
%Then, calculate entropy for all elements
%of the PMF with p(x) > 0
ind = margSttProb > 0;
entropy = Sum(margSttProb(ind,1).*log2(marg
SttProb(ind,1)));
%Calculate ESC measures
emergence = (-1)*kConst*entropy;
selfOrganization = 1 - emergence;
complexity = 4 * emergence * selfOrganization;

varargout1 = entropy;
end

B. Continuous Complexity Measures

function [
emergence, …
selfOrganization, …
complexity, …
varargout] = …
ContinuousComplexityMeasures(…
pdfSample, varargin)
minVal = varargin{1};
maxVal = varargin{2};
distSampleSize = varargin{3};
%Determine a integration interval Delta
%Remember that by definition
%for really small Deltas the entropy
%is negative and can become -infinity
Delta = (maxVal-minVal)/(distSampleSize);
%Use the provided Probability Distribution
Function
%to determine the non-zero elements of the
PDF
tempPdf = pdfSample;
ind = tempPdf > 0;
pdfNoZeros = sum(ind);
%Calculate Differential Entropy
%for the non-zero elements of the PDF
rightHandSide = -1*log2(Delta);
leftHandSide = (-1)*sum((Delta*tempPdf(ind)
).*log2(tempPdf(ind)));
lmtEntrpy = rightHandSide + leftHandSide;
diffEntrop = lmtEntrpy + log2(Delta);
%K constant to be determined by 1) the number of
%no-zeros probability elements,
%2) a large value (i.e. the sample size)
if(if(length(varargin) < 4))

if(distSampleSize < pdfNoZeros)
kConst = 1/log2(pdfNoZeros);

else
kConst = 1/log2(distSampleSize);

end
else

kConst = 1/log2(varargin4);
end
modfDiffEntrop = diffEntrop.*kConst;
if(modfDiffEntrop < 0)

emergence = 0;
selfOrganization = 1;
complexity = 0;

else
emergence = modfDiffEntrop;

selfOrganization = 1 - emergence;
complexity = 4 * (emergence *
selfOrganization);

end
end

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

11

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

FIGURe A1 | e, S, and C for the global, kitchen, and indoor comfort electric consumption for several timescales. For the global consumption, note that
as the scale of the measures turns coarser, the probability distribution becomes more uniform. The highest Cs, few states with high probability and many emergent
new states, is given for the minute/hour consumption. Moreover, even while the consumption of energy presents many new patterns for coarser measurement
scales (i.e., week), cyclical and seasonal components remain considerable high (C ≈ 0.78). In fact, the same ESC behavior can be observed for the comfort energy
usage give its high correlation with the whole house consumption. On the other hand, the kitchen electricity usage is highly self-organized (i.e., regular) for the
minute and hour scales; however, self-organization quickly decays for the day time scale. Thus, kitchen’s daily electric consumption even while regular presents rich
new patterns of usage (e.g., dinner with old friends).

C. experimental description

In the following, experimental results are briefly described. To
demonstrate the functionality of E, S, and C, two types of experi-
ments were performed. On the one hand, discrete complexity
measures using publicly available machine learning datasets
were tested. On the other hand, continuous complexity measures
using probability density functions were employed. For the
discrete datasets, we used noOfStates = 10, whereas for the con-
tinuous case, we used noOfStates = 50. Only real-world datasets
are described. For continuous complexity measures Gaussian
and Power-Law distributions were used, however, since these
probability distributions have been well documented elsewhere
(Santamaría-Bonfil et al., 2016), no further details are provided.
Results for the discrete measures for, the solar flares and the
bike-sharing system datasets are shown in Figure 3, whereas for
probability distributions are presented in Figure 4.

C.1. Solar Flares
A solar flare occurs when magnetic energy that has built up in
the solar atmosphere is suddenly released. UCI’s dataset contains
three types of classes categorized by their magnitude and fre-
quency. For each class, the number of solar flares of a certain class
that occur in a 24-h period are counted.1 The variables analyzed

1 https://archive.ics.uci.edu/ml/datasets/Solar+Flare.

are three types of solar flares: (a) C-class flares, which are com-
mon, (b) M-class flares, which are flares of moderate size, and
(c) X-class flares, which constitute flares of a severe magnitude.

C.2. Bike-Sharing System
Bike-sharing systems (BSS) are a new generation of urban mobil-
ity systems, composed by bicycles which are rented to subscrib-
ers for these to travel short to medium distances. These type of
systems can be scrutinized from a large-scale statistic point of
view.2 In these experiments, BSS data consist in the total count
of bicycle rentals per hour including both, casual and registered
users. Further details can be obtained from Fanaee-T and Gama
(2013), and UCI’s repository (Lichman, 2013).

C.3. Individual Household Electric Power
Consumption Dataset
The need for a more efficient lifestyle requires to parametrize sev-
eral aspects of human activities. Household electric consumption
provides information not only to casual/conscious consumers
but also to providers and grid managers. In these experiments,
measurements of electric power consumption in one household
with a 1-min sampling rate over a period of almost 4 years were

2 https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://archive.ics.uci.edu/ml/datasets/Solar + Flare
https://archive.ics.uci.edu/ml/datasets/Bike + Sharing + Dataset

12

Santamaría-Bonfil et al. A Package for Measuring Complexity

Frontiers in Robotics and AI | www.frontiersin.org March 2017 | Volume 4 | Article 10

used.3 We employed ~1 million observations of two variables: (a)
the global household active power, which corresponds to global
measures of the minute-averaged active power in kilowatts and
(b) Kitchen energy sub-metering, which corresponds to measure-
ments from a kitchen containing a dishwasher, an oven, and a
microwave.

D. Example: Analyzing Timescales
In the previous section, numeric results of different phenomena
and parameters of distributions were presented. In this section,
we provide results for the analysis of multiple timescales. For such
purposes, we employed the largest dataset available which is the

3 https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+
consumption#.

household electric consumption. In the former example, only
half of the dataset was employed. For this example, ~2 million
points were used. The different timescales that were analyzed are
minute, hour, day, week, and month. Further, we added another
variable to the analysis, indoor comfort which consists of an
electric water-heater and an air-conditioner. It was considered
because indoor comfort represents around 60% of a building
energy consumption.

First, we remove missing data points. Then, data were aver-
aged in accordance to the aforementioned timescales. Next, we
calculate Emergence, Self-organization, and Complexity, for
the house’s global, kitchen, and indoor comfort active power.
Results for the complexity measures are presented in Figure A1.
The code for this example is provided in the Github repository
(Santamaría-Bonfil, 2016) with the name Example2Complexity
Measures.m.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://archive.ics.uci.edu/ml/datasets/Individual + household + electric + power + consumption#
https://archive.ics.uci.edu/ml/datasets/Individual + household + electric + power + consumption#

	A Package for Measuring Emergence, Self-organization, and Complexity Based on Shannon Entropy
	1. Description
	2. Method: Emergence, Self-Organization, and Complexity
	3. Functions of Complexity Measures
	3.1. Functions Definition
	3.1.1. Inputs
	3.1.2. Outputs

	3.2. Results Interpretation
	3.3. Issues and Limitations

	4. Code Example: ExampleComplexityMeasures
	4.1. How to Modify the Example?

	5. Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References
	Appendix
	A. Discrete Complexity Measures
	B. Continuous Complexity Measures
	C. Experimental Description
	C.1. Solar Flares
	C.2. Bike-Sharing System
	C.3. Individual Household Electric Power Consumption Dataset
	D. Example: Analyzing Timescales

